Android Taint Flow
Analysis for App Sets

Will Klieber*, Lori Flynn,
Amar Bhosale, Limin Jia, and Lujo Bauer

Carnegie Mellon University

*presenting

=== Software Engineering Institute | Carnegie Mellon University.

Motivation

= Detect malicious apps that leak sensitive data.
= E.g., leak contacts list to marketing company.

= “All or nothing” permission model.

= Apps can collude to leak data.

" Evades precise detection if only analyzed individually.

= We build upon FlowDroid.

* FlowDroid alone handles only intra-component flows.

= We extend it to handle inter-app flows.

Introduction: Android

Android apps have four types of components:
= Activities (our focus)
= Services
= Content providers
= Broadcast receivers

Intents are messages to components.
= Explicit or implicit designation of recipient

Components declare intent filters to receive implicit intents.

Matched based on properties of intents, e.g.:
= Action string (e.g., “android.intent.action.VIEW”)
= Data MIME type (e.g., “image/png”)

Introduction

* Taint Analysis tracks the flow of sensitive data.
= (Can be static analysis or dynamic analysis.

= Qur analysis is static.

= We build upon existing Android static analyses:
= FlowDroid [1]: finds intra-component information flow

= Epicc [2]: identifies intent specifications

[1] S. Arzt et al., "FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps”. PLDI, 2014.

[2] D. Octeau et al., “Effective inter-component communication mapping in
Android with Epicc: An essential step towards holistic security analysis”.
USENIX Security, 2013.

Our Contribution

= \WWe developed a static analyzer called “DidFail”
(“Droid Intent Data Flow Analysis for Information Leakage”).

" Finds flows of sensitive data across app boundaries.

= Source code and binaries available at: (or google “DidFail SOAP”)
http://www.cert.org/secure-coding/tools/didfail.cfm

= Two-phase analysis:
1. Analyze each app inisolation.

2. Use the result of Phase-1 analysis to determine inter-app flows.

= \We tested our analyzer on two sets of apps.

Terminology

Definition. A source is an external resource (external to the app,
not necessarily external to the phone) from which data is read.

Definition. A sink is an external resource to which data is written.

For example,

= Sources: Device ID, contacts, photos, current location, etc.

= Sinks: Internet, outbound text messages, file system, etc.

Motivating Example

= App SendSMS.apk sends an intent (a message) to Echoer.apk,
which sends a result back.

SendSMS.apk Echoer.apk

Device ID

(Source)\\

intent gt getintent()
startActivityForResult() =

i

- setResult()

onActivityResult() telSsult

-t

Text Message
(Sink)

= SendSMS.apk tries to launder the taint through Echoer.apk.

= Existing static analysis tools cannot precisely detect such inter-app data flows.

Analysis Design

= Phase 1: Each app analyzed once, in isolation.

» FlowDroid: Finds tainted dataflow from sources to sinks.
= Received intents are considered sources.

= Sent intent are considered sinks.
= Epicc: Determines properties of intents.

= Each intent-sending call site is labelled with a unique intent ID.

= Phase 2: Analyze a set of apps: {App 13—+ Phase1

= For each intent sent by a component,
determine which components can

gAppZ +—» Phasel |

|
rJ— r

receive the intent. i App3 i Phasel ——— Phase 2
= Generate & solve taint flow equations. °
®
®

. Appn +— Phasel

.........

— el

Running Example

src,

sink, @ T/J@
I3

SIC;

&)

sink,

p
For ¢ € {1,3}:

e (; sends data from src; to component C5 via intent I;.
e (5 reads data from intent I; and echoes it back to C;.

e (; reads data from the result and writes it to sink;.

.
>

* sink, is tainted with only src;,.

< sink, is tainted with only src;.

s N
Three components: C;, C,, C,.
C1 = SendSMS
C2 = Echoer
C3is similar to C1

_ J

)
J
N
Y,

Running Example

src,

sink, @ T:@
I3

SIC, =,

9

o “src < sink”: Flow from src to sink in C.
o “I(Crtx,CRrx,td)”: Intent from Ctx to Crx with ID id.
e “R(I)”: Response (result) for intent I.

sink,

Notation:

o “T(s)”: Set of sources with which s is tainted.

10

Running Example

Src,
D
(<)
I3
SIC, (g
sink, ;)
Notation*

C
o “src — sink”:

oM

. Flow from sr

~.

A\

\

STCq ﬂ) I(Cl, 02, ’Ldl)

'

<

I(Cy, Cy,id1) <2 R(I(Cy,Cy, idy)),

(I(Cl, CQ, Zdl)) —) sink1

\f

i 5? %glg,,igg,c;;dg)) % Si’nkg

STC3 —3> I(Cg, CQ, idg)

1(C3, Cs, id3) <2 R(I(Cs,Ca, ids))

o “I(Crx,CRx,id)”: Intent fromr €< to Crx with IDid-

e “R(I)”
o “T(s)”:

: Response (result) for intent I.

Set of sources with which s is tainted.

Running Example

src, s
q _[1
(<)
I
SIC, 2 (/; :

(‘ﬂ

STCq &) I(Cl, CQ, Zdl)
1(01,02, ’idl)
R((01,02, Zdl)) —> sznkl

2 R(I(CY,Cy, id1))

(.
>

&)

sink,

STC3 &) I(Og, CQ, ng)
I(C3, Cy, id3)
R(1(Cs,Cs,1d3)) 3, sinks

9%
\

@2, R(I(Cs, Cy, ids))

J

Notatlon

C
e “src — sink”:

e “R(I)”: Response (result) for intent I.

. Flow from src to sink in C.

o “I(Ctx,CRx,id)”: Intent from Crx to Crx with ID id.

B
Final Sink Taints:
* T(sink,) = {src,}

&

~

* T(sinks) = {srcs}

e “T(s)”: Set of sources with which s is tainted.

12

Phase-1 Flow Equations

Analyze each component separately.

Phase 1 Flow Equations: src,
4 s)
srcy — I(Cl, = Zdl)
Ci . :
\R(I(Cl, *, %)) — sink;) sink,
\

7

I(%,Ca, %) <2 R(I(x,Cy, %))

9

>—< SIC,
\R(I(Cz;, *, %)) s sinks) @k3
Notation

o “src £> sink”: Flow from src to sink in C.
e “I(Crx,CRrx,id)”: Intent from Crx to Crx with ID id.
e “R(I)”: Response (result) for intent I.

e An asterisk (“*”) indicates an unknown component.

13

SIc,
@

Phase-2 Flow Equations " @

Instantiate Phase-1 equations for all oo, 5
possible sender/receiver pairs. @
sink,
Phase 1 Flow Equations: Phase 2 Flow Equations:
srcy ﬂ) I(Cl,*,idl) S1rCq —C-L> I(Cl,CQ,idl)
R(I(Cy,*,%*)) © sinkq R(I(C,Cs,1idy)) o sinkq

I(Cy, Cy, idy) 2 R(I(Cy, Cy,idy))

I(x,Ca,%) <% R(I(*,Ca,) .
I(C3a 023 ZdS) _2> R(I(C3J 027 Zd3))
STc3 % I(Cg,*,idg) Src3 % I(Cg,CQ,idg)
R(I(Cs,*, %)) <2 sinks R(I(C3, Cy, id3)) =2 sinks

Notation

C
e “src — sink”: Flow from src to sink in C.

e “I(Ctx,CRx,id)”: Intent from Crx to Crx with ID id.
e “R(I)”: Response (result) for intent I.

14

src,

. . ~N
Phase-2 Taint Equations @ &
sink «/
For each flow equation “src — sink”, sre, 5 (/©
generate taint equation “T(src) € T(sink)”. @
sink,
Phase 2 Flow Equations: Phase 2 Taint Equations:
srep < I(Cy,Cs,idy) T'(srcy) CT(I(Cy,Cy,1dy))
R(I(Cl, CQ, Zdl)) —> sznk1 T(R(I(Cl, CQ, 1d))) C T(smkl)
I(Cl,CQ,idl) —2> R(I(Cl,CQ,idl)) T(I(Cl,CQ,Zdl)) T(R(I(Cl,CQ,Zdl)))
1(C3, Cs, id3) <2 R(I(Cs, Cs, ids)) T(I(Cs,Cs, id1)) C T(R(I(Cs, Ca, id3)))
sres 2 I(Cy, Ca, ids) T(sres) € T(I(Cs, Cs, id3))
R(I(C3, CQ, ng)) —> 8’&71]63 T(R(I(Cg, CQ, ng))) C T(Sinkg,)
Notation

If s is a non-intent source,
then T(s) = {s}.

C
e “src — sink”: Flow from src to sink in C.

o “I(Ctx,CRx,id)”: Intent from Crx to Crx with ID id.
e “R(I)”: Response (result) for intent I.

e “T(s)”: Set of sources with which s is tainted.

15

Phase 1
—>» | Epicc
Original APK
| TransformAPK
FlowDroid
2 (modified)
Extract manifest
i App 1 ‘-—n- Phase 1
E App 2 é—» Phase 1
EApp 3 E—» Phase 1 E Phase 2
booseses - >
-
. o
o
®
A H
i Appn +— Phase 1

16

Implementation: Phase 1

= APK Transformer

= Assigns unique Intent ID to each call site of intent-sending methods.

= Enables matching intents from the output of FlowDroid and Epicc

= Uses Soot to read APK, modify code (in Jimple), and write new APK.

= Problem: Epicc is closed-source. How to make it emit Intent IDs?
= Solution (hack): Add putExtra call with Intent ID.

Phase 1

Original APK

>

TransformAPK

Epicc

Extract manifest

FlowDroid
(modified)

17

Implementation: Phase 1

= FlowDroid Modifications:

= Extract intent IDs inserted by APK Transformer, and include in output.

= When sink is an intent, identify the sending component.

" |nbase.startActivity, assume base is the sending component.

(Soundness?)

* For deterministic output: Sort the final list of flows.

Phase 1

Original APK

>

Epicc

TransformAPK

'

Extract manifest

FlowDroid
(modified)

18

Implementation: Phase 2

" Phase 2
= Take the Phase 1 output.
= Generate and solve the data-flow equations.
= Qutput:

1. Directed graph indicating information flow between
sources, intents, intent results, and sinks.

2. Taintedness of each sink.

. App 1 +—»{ Phase 1

.........

iAppZ +—»| Phasel |

.........

.........

§ App 3 i—» Phase 1

.........

Appn +— Phase 1

Testing DidFail analyzer: App Set 1

= SendSMS.apk Src; ~
= Reads device ID, passes through Echoer, c l
and leaks it via SMS sink; Elj -,
" Echoer.apk St I (@
» Echoes the data received via an intent @
= WriteFile.apk sinks %)

= Reads physical location (from GPS),
passes through Echoer, and writes it to a file

= getDeviceld DendSM5, startActivityForResult

getintent Lchoery setResult

onActivityResult SendSWS, send TextM essage

= getLastKnownLocation Writele startActivityForResult

getintent Lchoer setResult

onActivityResult Writeltle, write

20

Testing DidFail analyzer: App Set 2 (DroidBench)

Int3 = I(IntentSink2.apk, IntentSourcel.apk, id3) Graph generated using GraphViz.
Int4 = I(IntentSourcel.apk, IntentSinkl.apk, id4)
Res8 = R(Int4)

Srcl5 = getDeviceld
Snkl13 = Log.1

Some taint flows:

IntentSink?2 IntentSourcel
= Srclb > Int3 > Snk13

. Srel5 I”rutentSz'nlc2> Int3 [ntem&‘%’c)'u,”rcze1> Intd .TmfentS'z'?fzk1> ResS IntemtSofu,'rce1> Snk13

IntentSink1 IntentSourcel
= Srclh » Res®& s Snkl13

21

Limitations

= Unsoundness
* |nherited from FlowDroid/Epicc

= Native code, reflection, etc.
Shared static fields

Implicit flows

Currently, only activity intents

= Bugs

= Imprecision
* |nherited from FlowDroid/Epicc
* DidFail doesn’t consider permissions when matching intents

= All intents received by a component are conflated together as a single
source

22

Use of Two-Phase Approach in App Stores

= We envision that the two-phase analysis can be used as follows:
= An app store runs the phase-1 analysis for each app it has.

= When the user wants to download a new app, the store runs the phase-2
analysis and indicates new flows.

= Fast response to user.

App Store/Security System Provider

Check(AppZ, List_MyApps) Stored Phase 1 analysis Apps

App;: TaintFlowInfo,;, Intentinfo,, App;

App:2: TaintFlowInfoa,, Intentinfoa, App,

Apps

Appy: TaintFlowInfoay, Intentinfoay Appa

“Flows possible are ' Apps
[POSSIBLE_FLOWS]. Phase 2 analysi

Do you want to install AppZ?” Output: potential tainted flows ApPx

DidFail vs IccTA

= |ccTA was developed (at roughly the same time as DidFail) by:

= LiLi, Alexandre Bartel, Jacques Klein, Yves Le Traon (Luxembourg);
= Steven Arzt, Siegfried Rasthofer, Eric Bodden (EC SPRIDE);

= Damien Octeau, Patrick McDaniel (Penn State).

" |ccTA uses a one-phase analysis
" |ccTA is more precise than DidFail’s two-phase analysis.

= Two-phase DidFail analysis allows fast 2nd-phase computation.

= Future collaboration between IccTA and DidFail teams?

24

Conclusion

= We introduced a new analysis that integrates and enhances existing
Android app static analyses.

= Demonstrated feasibility by implementing a prototype and testing it.
= Two-phase analysis can be used by app store to provide fast response.

= Future work:
= Implicit flows
Static fields

Distinguish different received intents

Other data channels (file system, non-activity intents)
= Etc.

25

Thank You

