
Android Taint Flow
Analysis for App Sets

Will Klieber*, Lori Flynn,
Amar Bhosale , Limin Jia, and Lujo Bauer

Carnegie Mellon University

*presenting

Motivation

 Detect malicious apps that leak sensitive data.

 E.g., leak contacts list to marketing company.

 “All or nothing” permission model.

 Apps can collude to leak data.

 Evades precise detection if only analyzed individually.

 We build upon FlowDroid.

 FlowDroid alone handles only intra-component flows.

 We extend it to handle inter-app flows.

2

Introduction: Android

 Android apps have four types of components:
 Activities (our focus)
 Services
 Content providers
 Broadcast receivers

 Intents are messages to components.
 Explicit or implicit designation of recipient

 Components declare intent filters to receive implicit intents.

 Matched based on properties of intents, e.g.:
 Action string (e.g., “android.intent.action.VIEW ”)
 Data MIME type (e.g., “image/png”)

3

Introduction

 Taint Analysis tracks the flow of sensitive data.
 Can be static analysis or dynamic analysis.
 Our analysis is static.

 We build upon existing Android static analyses:
 FlowDroid [1]: finds intra-component information flow
 Epicc [2]: identifies intent specifications

4

[1] S. Arzt et al., “FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps”. PLDI, 2014.

[2] D. Octeau et al., “Effective inter-component communication mapping in
Android with Epicc: An essential step towards holistic security analysis”.
USENIX Security, 2013.

Our Contribution

 We developed a static analyzer called “DidFail”
(“Droid Intent Data Flow Analysis for Information Leakage”).
 Finds flows of sensitive data across app boundaries.
 Source code and binaries available at: (or google “DidFail SOAP”)
http://www.cert.org/secure-coding/tools/didfail.cfm

 Two-phase analysis:
1. Analyze each app in isolation.
2. Use the result of Phase-1 analysis to determine inter-app flows.

 We tested our analyzer on two sets of apps.

5

Terminology

Definition. A source is an external resource (external to the app,
not necessarily external to the phone) from which data is read.

Definition. A sink is an external resource to which data is written.

For example,

 Sources: Device ID, contacts, photos, current location, etc.

 Sinks: Internet, outbound text messages, file system, etc.

6

Motivating Example

 App SendSMS.apk sends an intent (a message) to Echoer.apk,
which sends a result back.

7

 SendSMS.apk tries to launder the taint through Echoer.apk.

 Existing static analysis tools cannot precisely detect such inter-app data flows.

setResult()

getIntent()

onActivityResult()

Echoer.apk
Device ID
(Source)

SendSMS.apk

Text Message

startActivityForResult()

(Sink)

Analysis Design

 Phase 1: Each app analyzed once, in isolation.
 FlowDroid: Finds tainted dataflow from sources to sinks.

 Received intents are considered sources.
 Sent intent are considered sinks.

 Epicc: Determines properties of intents.
 Each intent-sending call site is labelled with a unique intent ID.

8

 Phase 2: Analyze a set of apps:
 For each intent sent by a component,

determine which components can
receive the intent.

 Generate & solve taint flow equations.

Running Example

9

Three components: C1, C2, C3.
C1 = SendSMS
C2 = Echoer
C3 is similar to C1

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

• sink1 is tainted with only src1.
• sink3 is tainted with only src3.

Running Example

10

Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Running Example

11

Notation:

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Running Example

12

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Final Sink Taints:
• T(sink1) = {src1}
• T(sink3) = {src3}

Notation:

C1

C3

src1

src3

sink1

sink3

Phase-1 Flow Equations

C2

13

Analyze each component separately.

Notation

• An asterisk (“∗”) indicates an unknown component.

Phase 1 Flow Equations:

14

Phase 1 Flow Equations: Phase 2 Flow Equations:

Phase-2 Flow Equations

Notation

Instantiate Phase-1 equations for all
possible sender/receiver pairs.

C1

C3

C2

src1

src3

sink1

sink3

I1

I3

Notation

Phase-2 Taint Equations

15

Phase 2 Flow Equations: Phase 2 Taint Equations:

For each flow equation “src → sink”,generate taint equation “T(src) ⊆ T(sink)”.
C1

C3

C2

src1

src3

sink1

sink3

I1

I3

If s is a non-intent source,
then T(s) = {s}.

16

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

Implementation: Phase 1

 APK Transformer
 Assigns unique Intent ID to each call site of intent-sending methods.

 Enables matching intents from the output of FlowDroid and Epicc

 Uses Soot to read APK, modify code (in Jimple), and write new APK.

 Problem: Epicc is closed-source. How to make it emit Intent IDs?
 Solution (hack): Add putExtra call with Intent ID.

17

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

Implementation: Phase 1

 FlowDroid Modifications:
 Extract intent IDs inserted by APK Transformer, and include in output.
 When sink is an intent, identify the sending component.

 In base.startActivity, assume base is the sending component.
(Soundness?)

 For deterministic output: Sort the final list of flows.

18

TransformAPK
FlowDroid
(modified)

Epicc

Original APK

Extract manifest

Phase 1

Implementation: Phase 2

 Phase 2
 Take the Phase 1 output.
 Generate and solve the data-flow equations.
 Output:

1. Directed graph indicating information flow between
sources, intents, intent results, and sinks.

2. Taintedness of each sink.

19

Testing DidFail analyzer: App Set 1

 SendSMS.apk
 Reads device ID, passes through Echoer,

and leaks it via SMS
 Echoer.apk

 Echoes the data received via an intent
 WriteFile.apk

 Reads physical location (from GPS),
passes through Echoer, and writes it to a file

20

Testing DidFail analyzer: App Set 2 (DroidBench)

21

Some taint flows:

Int3 = I(IntentSink2.apk, IntentSource1.apk, id3)

Int4 = I(IntentSource1.apk, IntentSink1.apk, id4)

Res8 = R(Int4)

Src15 = getDeviceId

Snk13 = Log.i

Graph generated using GraphViz.

Limitations

 Unsoundness
 Inherited from FlowDroid/Epicc

 Native code, reflection, etc.
 Shared static fields
 Implicit flows
 Currently, only activity intents
 Bugs

 Imprecision
 Inherited from FlowDroid/Epicc
 DidFail doesn’t consider permissions when matching intents
 All intents received by a component are conflated together as a single

source

22

Use of Two-Phase Approach in App Stores

 We envision that the two-phase analysis can be used as follows:
 An app store runs the phase-1 analysis for each app it has.
 When the user wants to download a new app, the store runs the phase-2

analysis and indicates new flows.
 Fast response to user.

23

DidFail vs IccTA

 IccTA was developed (at roughly the same time as DidFail) by:
 Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon (Luxembourg);
 Steven Arzt, Siegfried Rasthofer, Eric Bodden (EC SPRIDE);
 Damien Octeau, Patrick McDaniel (Penn State).

 IccTA uses a one-phase analysis
 IccTA is more precise than DidFail’s two-phase analysis.
 Two-phase DidFail analysis allows fast 2nd-phase computation.

 Future collaboration between IccTA and DidFail teams?

24

Conclusion

 We introduced a new analysis that integrates and enhances existing
Android app static analyses.

 Demonstrated feasibility by implementing a prototype and testing it.

 Two-phase analysis can be used by app store to provide fast response.

 Future work:
 Implicit flows
 Static fields
 Distinguish different received intents
 Other data channels (file system, non-activity intents)
 Etc.

25

Thank You

