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Preview

É Non-prenex, non-clausal QBF solver (DPLL-based).
É Game-state learning

É Reformulation of clause/cube learning,
extended to non-prenex case.

É Ghost literals
É Symmetric propagation technique,
exploits structure of non-prenex, non-clausal instances.
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Why study QBF?
É Practical problems naturally expressed in QBF.
É Formal verification: e.g., Bounded Model Checking
É SAT solvers: success in formal verification.

É Hopefully QBF solvers too.
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Semantics
É φ|x=T : plug in T (true) for x. E.g., (x∨ y)|x=T = (T∨ y) = T.

É [∀x.φ] = [φ|x=T]∧ [φ|x=F] (universal quantifier)

É [∃x.φ] = [φ|x=T]∨ [φ|x=F] (existential quantifier)

QBF Solver:
É Input formula: InFmla
É Assume each variable quantified exactly once in InFmla.

É No free variables.
É InFmla evaluates to either T or F.

É Goal: determine the truth value of InFmla.
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QBF as a Game
É Existential variables are owned by Player E.
Universal variables are owned by Player U.

É Players assign variables in quantification order.
É Start with outermost quantified (leftmost).

É Player E’s goal: Make InFmla be true.
Player U’s goal: Make InFmla be false.

É To make this more precise: reduction (next slide).
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Reduction of a Formula
É Let “π” denote a (partial) assignment of values to variables.
É To construct the reduction of f under π (denoted “f |π”):

É For each variable x in π:
É Delete quantifier of x.
É Replace occurrences with assigned value.

É Example:
É f = (∃e1.∀u2. e1 ∧u2), π= {e1 : True}
É Reduction: f |π = (∀u2. True∧u2)

É We say “P wins f under π” iff P has a winning strategy for f |π.
É Player E wins f under π iff f |π is true.
É Player U wins f under π iff f |π is false.
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Quantification Order
É Don’t need strict outer-to-inner.
É Block of one type of quantifier.
∃e1 ∃e2 ∃e3∀u4∀u5 . f

É We say {e1, e2, e3} are ready, while {u4, u5} are unready
(under the empty assignment).

É Definition: An unassigned variable is ready iff its quantifier
is not within the scope of the quantifier of an unassigned
variable owned by the opposing player.

É E.g., ∃e4.
�

(∃e5. f )∧ (∀u6. h)
�

É e4 and e5 are ready, while u6 is unready.
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Representation of Formulas
É Negation-Normal Form (NNF)

É Logical operators: AND, OR, NOT.
É Negations are pushed inward by De Morgan’s;
occur only in front of variables.

É Literal: a variable or its negation.
É Prenex: All quantifiers at beginning.
∀x∃y∀z.
︸ ︷︷ ︸

prefix
((x∧ y)∨ (y∧ z))
︸ ︷︷ ︸

matrix
É Early QBF solvers: Prenex CNF (Conjunctive Normal Form)
É Prenexing is harmful (since it limits the branching order).
É Converting to CNF is harmful
(since Player E’s variables are conflated with gate variables).
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Representation of Formulas (cont.)
É Gate variables: label each conjunction/disjunction.
É Prime gate vars: include quantifier prefix.
É Input variables: original (non-gate) variables.

∃e10
�

[∃e11 ∀u21

g 1
︷ ︸︸ ︷

(e10 ∧ e11 ∧u21) ]
︸ ︷︷ ︸

g ′1

∧ [∀u22 ∃e30

g 2
︷ ︸︸ ︷

(e10 ∧u22 ∧ e30) ]
︸ ︷︷ ︸

g ′2

�

É Quantified subformulas (e.g., g ′1, g ′2): subgames.
É Subgames g ′1 and g ′2 are independent after e10 assigned.

É Implementation: Pure NNF is not required.
A quantifier-free subformula can be represented in circuit form.
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Representation of Current Assignment
É During solving process, we assign values to the input variables.
É We write “CurAsgn” to denote the current assignment.
É CurAsgn may be represented by the set of literals assigned true.
É E.g., {e1=T, e2=F} may be represented by {e1,¬e2}.
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Top-level algorithm

/* Goal: Find out who wins InFmla (under empty asgn). */
1. while (true) {
2. while (don’t know who wins InFmla under CurAsgn) {
3. DecideLit(); // Pick a ready literal.
4. Propagate(); // Detect forced literals.
5. }
6. ...
7. ...
8. ...
9. ...

10. }
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Top-level algorithm

/* Goal: Find out who wins InFmla (under empty asgn). */
1. while (true) {
2. while (don’t know who wins InFmla under CurAsgn) {
3. DecideLit(); // Pick a ready literal.
4. Propagate(); // Detect forced literals.
5. }
6. Learn so that we don’t repeat same decisions again;
7. if (we learned who wins InFmla under ∅) return;
8. Backtrack(); // Remove recent literals from CurAsgn;
9. Propagate(); // Learned information will force a literal.

10. }

Optional modification: Target in on a subgame when independent.
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Game-State Learning – Motivation
É Reformulation of clause/cube learning, extended to non-prenex.
É For prenex CNF: merely cosmetic differences between
game-state learning and clause/cube learning.

∃e1∃e3∀u4∃e5∃e7. (e1 ∨ e3 ∨u4 ∨ e5)
︸ ︷︷ ︸

g1

∧ (e1 ∨¬e3 ∨¬u4 ∨ e7)
︸ ︷︷ ︸

g2

∧...

É g1: If {e1, e3, u4, e5} are false, then U wins.

É g1: If {¬e1,¬e3,¬u4,¬e5} are true, then U wins.
É g1: If {¬e1,¬e3,¬e5} are true and ¬u4 is non-false, then U wins.
(“non-false”: “true or unassigned”)

É Game-state sequent: “〈{¬e1,¬e3,¬e5},{¬u4}〉 |= (U wins InFmla)”
É Can learn who wins a subgame.
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Game-State Sequents
É Consider a subgame f (a quantified subformula).
É “〈Lnow, Lfut〉 |= (P wins f )” means “Player P wins f whenever:

1. every literal in Lnow is true, and
2. every literal in Lfut is non-false (i.e., true or unassigned)

(i.e., every literal in Lfut can be true in the future).”
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1. every literal in Lnow is true, and
2. every literal in Lfut is non-false (i.e., true or unassigned)

(i.e., every literal in Lfut can be true in the future).”

É Lnow may contain both input literals and gate literals;
Lfut may contain only input literals.
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Game-State Sequents
É Consider a subgame f (a quantified subformula).
É “〈Lnow, Lfut〉 |= (P wins f )” means “Player P wins f whenever:

1. every literal in Lnow is true, and
2. every literal in Lfut is non-false (i.e., true or unassigned)

(i.e., every literal in Lfut can be true in the future).”

É “P wins f whenever ...”:
“P wins f under all assignments meeting the conditions”
(even if out of quantification order, due to forced literals).

É Player E wins f under π iff f |π is true.
Player U wins f under π iff f |π is false.
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Game-State Sequents
É Consider a subgame f (a quantified subformula).
É 〈Lnow, Lfut〉 |= (P wins f ) matches an assignment π iff, under π,

1. every literal in Lnow is true, and
2. every literal in Lfut is non-false (i.e., true or unassigned)

(i.e., every literal in Lfut can be true in the future).”
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Propagation and Learning
É At time t ∗: CurAsgn=π∗, targetted subgame is f .
É Suppose π∗ ∪{¬`} matches 〈Lnow

B ∪{¬`}, Lfut
B 〉 |= (P loses h)

︸ ︷︷ ︸

in game-state database
h is a subgame of f

.
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Propagation and Learning
É At time t ∗: CurAsgn=π∗, targetted subgame is f .
É Suppose π∗ ∪{¬`} matches 〈Lnow

B ∪{¬`}, Lfut
B 〉 |= (P loses h), and

É ` is owned by P.
É ` does not appear outside h (and h is a subgame of f ).
É ` is upstream of all literals in Lfut

B . (` gets picked before Lfut
B )

É For P to win f , making `= F is at least as bad as `= T.
É Only way ` can help P win f is by helping P win h.
É If P makes `= F, then P loses h.
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É At time t ∗: CurAsgn=π∗, targetted subgame is f .
É Suppose π∗ ∪{¬`} matches 〈Lnow

B ∪{¬`}, Lfut
B 〉 |= (P loses h), and

É ` is owned by P.
É ` does not appear outside h (and h is a subgame of f ).
É ` is upstream of all literals in Lfut

B . (` gets picked before Lfut
B )

É For P to win f , making `= F is at least as bad as `= T.
É Therefore `= T is a forced literal for P.
É Suppose π∗ ∪{`} matches 〈Lnow

A ∪{`}, Lfut
A 〉 |= (P loses f )

︸ ︷︷ ︸

in game-state database

.
É P loses f under π∗ ∪{`}.
É P loses f under π∗, since `=F is no better than `=T.
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Propagation and Learning
É At time t ∗: CurAsgn=π∗, targetted subgame is f .
É Suppose π∗ ∪{¬`} matches 〈Lnow

B ∪{¬`}, Lfut
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É ` is upstream of all literals in Lfut

B . (` gets picked before Lfut
B )

É For P to win f , making `= F is at least as bad as `= T.
É Therefore `= T is a forced literal for P.
É Suppose π∗ ∪{`} matches 〈Lnow

A ∪{`}, Lfut
A 〉 |= (P loses f ).

É Then learn: 〈Lnow
A ∪Lnow

B , Lfut
A ∪Lfut

B 〉 |= (P loses f ).
(Since the same argument applies to any matching assignment.)
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Propagation and Learning
É At time t ∗: CurAsgn=π∗, targetted subgame is f .
É Suppose π∗ ∪{¬`} matches 〈Lnow

B ∪{¬`}, Lfut
B 〉 |= (P loses h), and

É ` is owned by P.
É ` does not appear outside h (and h is a subgame of f ).
É ` is upstream of all unassigned literals in Lfut

B .
É For P to win f , making `= F is at least as bad as `= T.
É Therefore `= T is a forced literal for P.
É Suppose π∗ ∪{`} matches 〈Lnow

A ∪{`}, Lfut
A 〉 |= (P loses f ).

É Then learn: 〈Lnow
A ∪Lnow

B , Lfut
A ∪Lfut

B 〉 |= (P loses f ).
(Since the same argument applies to any matching assignment.)

É Move assigned literals from Lfut
B to Lnow

B if upstream of `.
Then move back from Lnow

A ∪Lnow
B to Lfut

A ∪Lfut
B .
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Ghost Literals
É Goultiaeva et al. (SAT’09): propagation technique for circuit QBF.

É Force a gate literal if detect that Player E needs it.
É Asymmetric between players.

É We use ghost literals to make it symmetric:
É Prenex: g〈U〉 for Player U and g〈E〉 for Player E.

É g〈P 〉 forced when detect P can win only if g is true.
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Ghost Literals
É Goultiaeva et al. (SAT’09): propagation technique for circuit QBF.

É Force a gate literal if detect that Player E needs it.
É Asymmetric between players.

É We use ghost literals to make it symmetric:
É Prenex: g〈U〉 for Player U and g〈E〉 for Player E.
É Non-prenex: g〈U, b〉 and g〈E, b〉

É b is a subgame which contains g
É g〈P, b〉 forced when detect P can win b only if g is true.
É “Avoid a move that wins the battle but loses the war.”
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Optimized Ghost Literals
É Two tracks of QBFLIB benchmarks:

1. CNF, reverse engr’d to prenex circuit form (DAG-based).
2. Nonprenex NNF (tree-based representation of formula).

É Both tracks: No sharing of subformulas between subgames.
É If a subformula directly occurs in two subgames, then
the two occurrences are labelled with different gate vars.

É Optimization: See paper.
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Experimental Results: GhostQ vs CirQit
É Implementation: GhostQ.
É Compare to CirQit
(by Goultiaeva et al.)
on QBFLIB non-CNF.

Disclosure:
É Different test machines.
(CirQit not publicly available.)

É But CirQit had the advantage.
GhostQ: 2.66 GHz, 300 sec
CirQit: 2.80 GHz, 1200 sec

Family inst. GhostQ CirQit
Seidl 150 150 147
assertion 120 12 3
consistency 10 0 0
counter 45 40 39
dme 11 11 10
possibility 120 14 10
ring 20 18 15
semaphore 16 16 16

Total 492 261 240
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Experimental Results: GhostQ vs Qube

É QBFLIB CNF benchmarks.
É Timeout: 60 seconds.
É Reverse-engineer
from CNF to circuit form.

É GhostQ beats Qube on
tipdiam, tipfixpoint, k.
(279 vs 173 solved instances.)

Family inst. GhostQ Qube
bbox-01x 450 171 341
bbox_design 28 19 28
bmc 132 43 49
k 61 42 13
s 10 10 10
tipdiam 85 72 60
tipfixpoint 196 165 100
sort_net 53 0 19
all other 121 9 23

Total 1136 531 643
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Conclusion
É Game-State Learning: Extend clause/cube learning.
É Ghost Literals: Symmetric propagation technique.
É Promising experimental results.
É Future work: Consider ghosting input variables for non-prenex?
(Additional propagation power, but also more overhead.)
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