A Non-Prenex, Non-Clausal QBF

Solver with Game-State Learning

Will Klieber, Samir Sapra, Sicun Gao, Edmund Clarke
Carnegie Mellon University

July 13, 2010

1/19

Preview

» Non-prenex, non-clausal QBF solver (DPLL-based).

» Game-state learning

» Reformulation of clause/cube learning,
extended to non-prenex case.

» Ghost literals
» Symmetric propagation technique,
exploits structure of non-prenex, non-clausal instances.

2/19

Why study QBF?

» Practical problems naturally expressed in QBF.

» Formal verification: e.g., Bounded Model Checking

» SAT solvers: success in formal verification.
» Hopefully QBF solvers too.

3/19

> ¢|x=T

> [Vx.]

. plug in T (true) for x. E.g., (xVy)lx=T =(TVy)=T.

= [@lx=TIA[@lx=F] (universal quantifier)

» [3x. ¢] = [Plx=T] V[¢P|x=F] (existential quantifier)

QBF Solver:

» Input formula: InFmla

» Assume each variable quantified exactly once in InFmla.

» No free variables.
» InFmla evaluates to either T or F.

» Goal: determine the truth value of InFmla.

4/19

QBF as a Game

» Existential variables are owned by Player E.
Universal variables are owned by Player U.
» Players assign variables in quantification order.
> Start with outermost quantified (leftmost).

» Player E's goal: Make InFmla be true.
Player U's goal: Make InFmla be false.
» To make this more precise: reduction (next slide).

5/19

Reduction of a Formula

» Let """ denote a (partial) assignment of values to variables.

» To construct the reduction of f under m (denoted “f|r"):
» For each variable x in 7:

» Delete quantifier of x.
» Replace occurrences with assigned value.

6/19

Reduction of a Formula

» Let """ denote a (partial) assignment of values to variables.
» To construct the reduction of f under 7t (denoted “f|r"):
» For each variable x in 7

» Delete quantifier of x.
» Replace occurrences with assigned value.

v

Example:
» f=(e1.Vus. e1 Aup), mw={ey:True}
» Reduction: f|r = (Vup. True A uz)

v

We say “P wins f under " iff P has a winning strategy for f|x.

v

Player E wins f under 7 iff f|r is true.

v

Player U wins f under 7 iff f|r is false.

6/19

Quantification Order

» Don't need strict outer-to-inner.

» Block of one type of quantifier.
deydexdesVuyVus. f

» We say {e1, ez, e3} are ready, while {uy, us} are unready
(under the empty assignment).

7/19

Quantification Order

» Don't need strict outer-to-inner.

» Block of one type of quantifier.
deydexdesVuyVus. f

» We say {e1, ez, e3} are ready, while {uy, us} are unready
(under the empty assignment).

» Definition: An unassigned variable is ready iff its quantifier
is not within the scope of the quantifier of an unassigned
variable owned by the opposing player.

» E.g., Jes.((Fes.f)A(Vue. h))
» e4 and es are ready, while ug is unready.

7/19

Representation of Formulas

» Negation-Normal Form (NNF)
» Logical operators: AND, OR, NOT.
» Negations are pushed inward by De Morgan'’s;
occur only in front of variables.
» Literal: a variable or its negation.

» Prenex: All quantifiers at beginning.
VxAyVz. (xAy)V(yA2)
N———

prefix matrix
» Early QBF solvers: Prenex CNF (Conjunctive Normal Form)
» Prenexing is harmful (since it limits the branching order).

» Converting to CNF is harmful
(since Player E's variables are conflated with gate variables).

8/19

Representation of Formulas (cont.)

» Gate variables: label each conjunction/disjunction.
» Prime gate vars: include quantifier prefix.
» Input variables: original (non-gate) variables.
81 82
de1o [[Fe11 Vuar (eroAerr Auzi)] A [Vuoz Jeso (e10 Atz Aeso)]]

-~

/

8’1 82

9/19

Representation of Formulas (cont.)

» Gate variables: label each conjunction/disjunction.
» Prime gate vars: include quantifier prefix.
» Input variables: original (non-gate) variables.
81 82
de1o [[Fe11 Vuar (eroAerr Auzi)] A [Vuoz Jeso (e10 Atz Aeso)]]

~
/

8’1 82
> Quantified subformulas (e.g., g7, g5): subgames.

» Subgames g’1 and g’2 are independent after ejg assigned.

» Implementation: Pure NNF is not required.
A quantifier-free subformula can be represented in circuit form.

9/19

Representation of Current Assignment

» During solving process, we assign values to the input variables.
» We write “CurAsgn” to denote the current assignment.

» CurAsgn may be represented by the set of literals assigned true.
» E.g., {e1=T, ea=F} may be represented by {e1,—es}.

10/19

Top-level algorithm

/* Goal: Find out who wins InFmla (under empty asgn). */

1. while (true) {

2. while (don't know who wins InFmla under CurAsgn) {
3. DecideLit(); // Pick a ready literal.

4. Propagate(); // Detect forced literals.

5. b

6.

7.

8.

9.
10. }

11/19

Top-level algorithm

/* Goal: Find out who wins InFmla (under empty asgn). */

while (true) {

while (don't know who wins InFmla under CurAsgn) {
DecideLit(); // Pick a ready literal.
Propagate(); // Detect forced literals.

}

Learn so that we don’t repeat same decisions again;

if (we learned who wins InFmla under @) return;

Backtrack(); // Remove recent literals from CurAsgn;

Propagate(); // Learned information will force a literal.

}

Optional modification: Target in on a subgame when independent.

©O© 00 NO O W N -

—
o

11/19

Game-State Learning — Motivation

» Reformulation of clause/cube learning, extended to non-prenex.

» For prenex CNF: merely cosmetic differences between
game-state learning and clause/cube learning.

deidegVugdesde;. (e VesViugVes)A(er VoesV-ugVer)A...
81 82

» g1: If {e1, e3, u4, es} are false, then U wins.

12/19

Game-State Learning — Motivation

» Reformulation of clause/cube learning, extended to non-prenex.

» For prenex CNF: merely cosmetic differences between
game-state learning and clause/cube learning.

deidegVugdesde;. (e VesViugVes)A(er VoesV-ugVer)A...
81 82

» g1: If {e1, e3, u4, es} are false, then U wins.

» g1: If {—e1,—e3,~uyg,—es} are true, then U wins.

12/19

Game-State Learning — Motivation

» Reformulation of clause/cube learning, extended to non-prenex.

» For prenex CNF: merely cosmetic differences between
game-state learning and clause/cube learning.

deidegVugdesde;. (e VesViugVes)A(er VoesV-ugVer)A...
81 82

» g1: If {e1, e3, u4, es} are false, then U wins.
» g1: If {—e1,—e3,~uyg,—es} are true, then U wins.

» g1: If {—ey1,—e3,—es5} are true and —uy4 is non-false, then U wins.
(“non-false”: “true or unassigned”)

12/19

Game-State Learning — Motivation

» Reformulation of clause/cube learning, extended to non-prenex.

» For prenex CNF: merely cosmetic differences between
game-state learning and clause/cube learning.

deidegVugdesde;. (e VesViugVes)A(er VoesV-ugVer)A...
81 82

» g1: If {e1, e3, u4, es} are false, then U wins.

v

g1: If {—ey,—e3,—uq,—es} are true, then U wins.

A\

g1: If {—ey,—e3,—es} are true and —uy is non-false, then U wins.
(“non-false”: “true or unassigned”)

v

Game-state sequent: “({—e1,-es,es}, {-ua}) = (U wins InFmla)”

v

Can learn who wins a subgame.

12/19

Game-State Sequents

» Consider a subgame f (a quantified subformula).

» “(Lrow [futy = (P wins f)” means “Player P wins f whenever:

1. every literal in L™ is true, and
2. every literal in LUt is non-false (i.e., true or unassigned)
(i.e., every literal in LUt can be true in the future).”

13/19

Game-State Sequents

» Consider a subgame f (a quantified subformula).

» “(Lrow [futy = (P wins f)” means “Player P wins f whenever:

1. every literal in L™ is true, and
2. every literal in LUt is non-false (i.e., true or unassigned)
(i.e., every literal in LUt can be true in the future).”

» L["°W may contain both input literals and gate literals;
Lfut may contain only input literals.

13/19

Game-State Sequents

» Consider a subgame f (a quantified subformula).

» “(Lnow [futy = (P wins f)” means “Player P wins f whenever:
1. every literal in L™ is true, and
2. every literal in LUt is non-false (i.e., true or unassigned)
(i.e., every literal in LUt can be true in the future).”

» “P wins f whenever ...":
“P wins f under all assignments meeting the conditions”
(even if out of quantification order, due to forced literals).

» Player E wins f under 7 iff f|r is true.
Player U wins f under 7t iff f|rz is false.

13/19

Game-State Sequents

» Consider a subgame f (a quantified subformula).

» (LMow, [futy |= (P wins f) matches an assignment 7 iff, under ,

1. every literal in L™V is true, and
2. every literal in LUt is non-false (i.e., true or unassigned)
(i.e., every literal in LUt can be true in the future).”

13/19

Propagation and Learning

» At time t*: CurAsgn=r*, targetted subgame is f.
» Suppose 7*U {—{} matches (L™ U{~{}, L%‘t) = (P loses h).

in game-state database
h is a subgame of f

14/19

Propagation and Learning

» At time t*: CurAsgn=r*, targetted subgame is f.
» Suppose 7*U{=f} matches (Ly" U {-(}, L%’t) = (P loses h), and
» { is owned by P.
» ¢ does not appear outside h (and h is a subgame of f).
~ ¢ is upstream of all literals in L4*. (¢ gets picked before L%t
» For P to win f, making / =F is at least as bad as { =T.
> Only way ¢ can help P win f is by helping P win h.
» |If P makes ¢ =F, then P loses h.

14/19

Propagation and Learning

» At time t*: CurAsgn=r*, targetted subgame is f.
» Suppose 7*U{=f} matches (Ly" U {-(}, L%’t) = (P loses h), and
» { is owned by P.
» ¢ does not appear outside h (and h is a subgame of f).
~ ¢ is upstream of all literals in L'Y*. (¢ gets picked before L")
» For P to win f, making / =F is at least as bad as { =T.

» Therefore £ =T is a forced literal for P.

14/19

Propagation and Learning

» At time t*: CurAsgn=r*, targetted subgame is f.

» Suppose 7*U{=f} matches (Ly" U {-(}, L%’t) = (P loses h), and
» { is owned by P.
» ¢ does not appear outside h (and h is a subgame of f).
~ ¢ is upstream of all literals in L4*. (¢ gets picked before L%t

v

For P to win f, making { =F is at least as bad as { =T.
Therefore £ =T is a forced literal for P.
> Suppose m*U{¢} matches (L™ U{¢}, L) = (P loses f).

v

v

P loses f under m*U {/}. in game-state database

A\

P loses f under 7t*, since {=F is no better than /=T.

14/19

Propagation and Learning

» At time t*: CurAsgn=r*, targetted subgame is f.
» Suppose 7*U{=f} matches (Ly" U {-(}, L%’t) = (P loses h), and
» { is owned by P.

» ¢ does not appear outside h (and h is a subgame of f).
~ ¢ is upstream of all literals in L4*. (¢ gets picked before L%t

v

For P to win f, making { =F is at least as bad as { =T.

v

Therefore ¢ =T is a forced literal for P.
Suppose ¥ U{{} matches (LIP"U{{}, Lf}ft) = (P loses f).

Then learn: (Levu Lew, Lty L) = (P loses f).
(Since the same argument applies to any matching assignment.)

v

v

14/19

Propagation and Learning

» At time t*: CurAsgn=r*, targetted subgame is f.

» Suppose 7*U{=f} matches (Ly" U {-(}, L%’t) = (P loses h), and
» { is owned by P.
» ¢ does not appear outside h (and h is a subgame of f).
» { is upstream of all unassigned literals in L%‘t.

v

For P to win f, making { =F is at least as bad as { =T.
Therefore £ =T is a forced literal for P.
Suppose ¥ U{{} matches (LIP"U{{}, Lf}ft) = (P loses f).

Then learn: (Levu Lew, Lty L) = (P loses f).
(Since the same argument applies to any matching assignment.)

v

v

v

v

Move assigned literals from L‘;‘;t to LY if upstream of (.
Then move back from LI U L™ to Li‘ftUL%‘t.

14/19

Ghost Literals

» Goultiaeva et al. (SAT'09): propagation technique for circuit QBF.

» Force a gate literal if detect that Player E needs it.
» Asymmetric between players.

» We use ghost literals to make it symmetric:
» Prenex: g(U) for Player U and g(E) for Player E.
» g(P) forced when detect P can win only if g is true.

15/19

Ghost Literals

» Goultiaeva et al. (SAT'09): propagation technique for circuit QBF.

» Force a gate literal if detect that Player E needs it.
» Asymmetric between players.
» We use ghost literals to make it symmetric:

» Prenex: g(U) for Player U and g(E) for Player E.

> Non-prenex: g(U,b) and g(E, b)
» b is a subgame which contains g
» g(P, b) forced when detect P can win b only if g is true.
» “Avoid a move that wins the battle but loses the war.”

15/19

Optimized Ghost Literals

» Two tracks of QBFLIB benchmarks:

1. CNF, reverse engr'd to prenex circuit form (DAG-based).
2. Nonprenex NNF (tree-based representation of formula).

» Both tracks: No sharing of subformulas between subgames.

» If a subformula directly occurs in two subgames, then
the two occurrences are labelled with different gate vars.

» Optimization: See paper.

16/19

Experimental Results: GhostQ vs CirQit

» Implementation: GhostQ.

» Compare to CirQit
(by Goultiaeva et al.)
on QBFLIB non-CNF.

Disclosure:

» Different test machines.
(CirQit not publicly available.)

» But CirQit had the advantage.
GhostQ: 2.66 GHz, 300 sec
CirQit: 2.80 GHz, 1200 sec

Family inst. |GhostQ|CirQit
Seidl 150 150 | 147
assertion 120 12 3
consistency 10 0 0
counter 45 40 39
dme 11 11 10
possibility 120 14 10
ring 20 18 15
semaphore 16 16 16
Total 492 261 | 240

17/19

Experimental Results: GhostQ vs Qube

» QBFLIB CNF benchmarks. Family inst. |GhostQ| Qube
» Timeout: 60 seconds. bbox-01x 450 171 | 341
» Reverse-engineer bbox_design 28 19| 28
from CNF to circuit form. bmc 132 43| 49

» GhostQ beats Qube on k 61 42 13
tipdiam, tipfixpoint, k. S, . 10 10 10
(279 vs 173 solved instances.) t!p“!'am, 85 72| 60
tipfixpoint 196 | 165 | 100

sort_net 53 0| 19

all other 121 9| 23

Total 1136 531 | 643

18/19

Conclusion

» Game-State Learning: Extend clause/cube learning.
» Ghost Literals: Symmetric propagation technique.
» Promising experimental results.

» Future work: Consider ghosting input variables for non-prenex?
(Additional propagation power, but also more overhead.)

19/19

