Extending DPLL-Based QBF Solvers to Handle Free Variables

Will Klieber, Mikoláš Janota, Joao Marques-Silva, Edmund Clarke July 9, 2013

Open QBF

- ► Closed QBF: All variables quantified; answer is True or False.
- Open QBF: Contains free (unquantified) variables.
- ► Goal: Find equivalent propositional formula.
- ► E.g., given $\exists x. x \land (y \lor z)$, return $y \lor z$.

Open QBF

- ► Closed QBF: All variables quantified; answer is True or False.
- Open QBF: Contains free (unquantified) variables.
- ► Goal: Find equivalent propositional formula.
- ▶ E.g., given $\exists x. x \land (y \lor z)$, return $y \lor z$.
- ► Applications: symbolic MC, synthesis from formal spec, etc.

Outline

- Naïve Algorithm
- Introduce sequents that generalize clauses for open QBF in CNF (without ghost variables)
- Experimental results
- Ghost variables: see paper.

▶ Notation: "ite (x, ϕ_1, ϕ_2) " is a formula with an *if-then-else*:

$$ite(x,\phi_1,\phi_2) = (x \land \phi_1) \lor (\neg x \land \phi_2)$$

▶ Notation: "ite (x, ϕ_1, ϕ_2) " is a formula with an *if-then-else*:

$$ite(x,\phi_1,\phi_2) = (x \land \phi_1) \lor (\neg x \land \phi_2)$$

► Recursively Shannon-expand on free variables:

$$\Phi = \operatorname{ite}(x, \, \Phi|_{x = \mathsf{True}}, \, \Phi|_{x = \mathsf{False}})$$

▶ Notation: "ite (x, ϕ_1, ϕ_2) " is a formula with an *if-then-else*:

$$ite(x,\phi_1,\phi_2) = (x \land \phi_1) \lor (\neg x \land \phi_2)$$

► Recursively Shannon-expand on free variables:

$$\Phi = \operatorname{ite}(x, \Phi|_{x=\mathsf{True}}, \Phi|_{x=\mathsf{False}})$$

▶ Base case (no more free variables): Give to closed-QBF solver.

1. function solve(Φ) {

- 2. if $(\Phi \text{ has no free variables})$
- 3. return closed_qbf_solve(Φ);

7. }

1.	function solve(Φ) {
2.	if $(\Phi$ has no free variables)
3.	$\texttt{return closed_qbf_solve}(\Phi);$
4.	\mathbf{x} := (a free variable in Φ);
5.	return ite(x, solve($\Phi _{x=True}$),
6.	$ ext{solve}(\Phi x= ext{False}));$
7.	}

1.	function solve(Φ) {
2.	if $(\Phi$ has no free variables)
3.	$\texttt{return closed_qbf_solve}(\Phi);$
4.	x := (a free variable in Φ);
5.	return ite(x, solve($\Phi _{x=True}$),
6.	$ ext{solve}(\Phi _{x= ext{False}}));$
7.	}

Builds OBDD if:

- 1. same branch order,
- 2. formula construction is memoized, and
- 3. ite (x, ϕ, ϕ) is simplified to ϕ .

- Naïve Algorithm:
 - Similar to DPLL in terms of branching.
 - But lacks many optimizations that make DPLL fast:
 - Non-chronological backtracking
 - Clause learning
- Our open-QBF technique:
 - Extend existing closed-QBF algorithm to allow free variables.

Prenex Form: $Q_1 \vec{x}_1 \dots Q_n \vec{x}_n$. ϕ where ϕ has no quantifiers.

- **Prenex Form:** $Q_1 \vec{x}_1 \dots Q_n \vec{x}_n$. ϕ where ϕ has no quantifiers.
- ▶ In $\forall x. \exists y. \phi$, we say that y is **downstream** of x.
 - $\exists y \text{ occurs inside scope of } \forall x.$

- **Prenex Form:** $Q_1 \vec{x}_1 \dots Q_n \vec{x}_n$. ϕ where ϕ has no quantifiers.
- In $\forall x. \exists y. \phi$, we say that y is **downstream** of x.
 - $\exists y \text{ occurs inside scope of } \forall x.$
- > Free variables are upstream of all quantified variables.

- **Prenex Form:** $Q_1 \vec{x}_1 \dots Q_n \vec{x}_n$. ϕ where ϕ has no quantifiers.
- In $\forall x. \exists y. \phi$, we say that y is **downstream** of x.
 - $\exists y \text{ occurs inside scope of } \forall x.$
- Free variables are upstream of all quantified variables.
- We identify assignment π with the set of literals made true by π .
- E.g., identify $\{(e_1, \mathsf{True}), (u_2, \mathsf{False})\}$ with $\{e_1, \neg u_2\}$.

- **Prenex Form:** $Q_1 \vec{x}_1 \dots Q_n \vec{x}_n$. ϕ where ϕ has no quantifiers.
- ▶ In $\forall x. \exists y. \phi$, we say that y is **downstream** of x.
 - $\exists y \text{ occurs inside scope of } \forall x.$
- ► Free variables are upstream of all quantified variables.
- We identify assignment π with the set of literals made true by π .
- E.g., identify $\{(e_1, \mathsf{True}), (u_2, \mathsf{False})\}$ with $\{e_1, \neg u_2\}$.
- Substitution: Φ|π substitutes assigned variables with values (even if bound by quantifier, which gets deleted).

QBF as a Game

- Existential variables are **owned** by Player \exists .
- Universal variables are **owned** by Player \forall .
- > Players assign variables in quantification order.
- The **goal** of Player \exists is to make Φ be true.
- The **goal** of Player \forall is to make Φ be false.

- Motivate definition of sequents.
- If π falsifies all literals in clause C in CNF Φ , then $\Phi|_{\pi} =$ False.

- Motivate definition of sequents.
- If π falsifies all literals in clause C in CNF Φ , then $\Phi|_{\pi} =$ False.
- If π falsifies all existential literals in clause C in CNF Φ and doesn't satisfy any universal literals in C, then Φ|π = False.

- Motivate definition of sequents.
- If π falsifies all literals in clause C in CNF Φ , then $\Phi|_{\pi} =$ False.
- If π falsifies all existential literals in clause C in CNF Φ and doesn't satisfy any universal literals in C, then Φ|π = False.
- If π satisfies all universal literals in a cube C in a DNF Φ and doesn't falsify any existential literals in C, then Φ|π = True.

- Motivate definition of sequents.
- If π falsifies all literals in clause C in CNF Φ , then $\Phi|_{\pi} =$ False.
- If π falsifies all existential literals in clause C in CNF Φ and doesn't satisfy any universal literals in C, then Φ|π = False.
- If π satisfies all universal literals in a cube C in a DNF Φ and doesn't falsify any existential literals in C, then Φ|π = True.
- ► Tautological clauses learned via long-distance resolution? (Assuming ∀-reduction is done only on-the-fly, during unit prop.)

$\langle L^{now}, L^{fut} \rangle$ Sequents

- ▶ Definition. A game-state specifier is a pair (L^{now}, L^{fut}) consisting of two sets of literals, L^{now} and L^{fut}.
- **Definition.** We say that $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ matches assignment π iff:
 - 1. for every literal ℓ in $L^{\rm now}\text{, }\ell|\pi=\mbox{True, and}$
 - 2. for every literal ℓ in L^{fut} , either $\ell|_{\pi} = \text{True or } \ell \notin \text{vars}(\pi)$.

$\langle L^{now}, L^{fut} \rangle$ Sequents

- ▶ Definition. A game-state specifier is a pair (L^{now}, L^{fut}) consisting of two sets of literals, L^{now} and L^{fut}.
- **Definition.** We say that $\langle L^{now}, L^{fut} \rangle$ matches assignment π iff:
 - 1. for every literal ℓ in $L^{\rm now}\text{, }\ell|\pi=\mbox{True, and}$
 - 2. for every literal ℓ in L^{fut} , either $\ell|_{\pi} = \text{True or } \ell \notin \text{vars}(\pi)$.
- E.g., $\langle \{e\}, \{u\} \rangle$ matches $\{e\}$ and $\{e, u\}$,

$\langle L^{\sf now}, L^{\sf fut} \rangle$ Sequents

- ▶ Definition. A game-state specifier is a pair (L^{now}, L^{fut}) consisting of two sets of literals, L^{now} and L^{fut}.
- **Definition.** We say that $\langle L^{now}, L^{fut} \rangle$ matches assignment π iff:
 - 1. for every literal ℓ in $L^{\rm now}$, $\ell|\pi={\rm True},$ and
 - 2. for every literal ℓ in L^{fut} , either $\ell|_{\pi} = \text{True or } \ell \notin \text{vars}(\pi)$.
- ▶ E.g., $\langle \{e\}, \{u\} \rangle$ matches $\{e\}$ and $\{e, u\}$, but does not match $\{\}$ or $\{e, \neg u\}$.

$\langle L^{now}, L^{fut} \rangle$ Sequents

- ▶ Definition. A game-state specifier is a pair (L^{now}, L^{fut}) consisting of two sets of literals, L^{now} and L^{fut}.
- **Definition.** We say that $\langle L^{now}, L^{fut} \rangle$ matches assignment π iff:
 - 1. for every literal ℓ in $L^{\rm now}\text{, }\ell|\pi=\mbox{True, and}$
 - 2. for every literal ℓ in L^{fut} , either $\ell|_{\pi} = \text{True or } \ell \notin \text{vars}(\pi)$.
- E.g., $\langle \{e\}, \{u\} \rangle$ matches $\{e\}$ and $\{e, u\}$, but does not match $\{\}$ or $\{e, \neg u\}$.
- $\langle L^{\text{now}}, \{\ell, \neg \ell\} \rangle$ matches π only if π doesn't assign ℓ .

$\langle L^{now}, L^{fut} \rangle$ Sequents

- ▶ Definition. A game-state specifier is a pair (L^{now}, L^{fut}) consisting of two sets of literals, L^{now} and L^{fut}.
- **Definition.** We say that $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ matches assignment π iff:
 - 1. for every literal ℓ in $L^{\rm now}$, $\ell|\pi={\rm True},$ and
 - 2. for every literal ℓ in L^{fut} , either $\ell|_{\pi} = \text{True or } \ell \notin \text{vars}(\pi)$.
- ▶ **Definition.** " $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\Phi \Leftrightarrow \psi)$ " means "for all assignments π that match $\langle L^{\text{now}}, L^{\text{fut}} \rangle$, $\Phi|_{\pi}$ is logically equivalent to $\psi|_{\pi}$ unless π is a **don't-care** assignment".

$\langle L^{\sf now}, L^{\sf fut} \rangle$ Sequents

- ▶ Definition. A game-state specifier is a pair (L^{now}, L^{fut}) consisting of two sets of literals, L^{now} and L^{fut}.
- **Definition.** We say that $\langle L^{\text{now}}, L^{\text{fut}} \rangle$ matches assignment π iff:
 - 1. for every literal ℓ in $L^{\rm now}$, $\ell|\pi={\rm True},$ and
 - 2. for every literal ℓ in L^{fut} , either $\ell|_{\pi} = \text{True or } \ell \notin \text{vars}(\pi)$.
- ▶ Definition. " $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\Phi \Leftrightarrow \psi)$ " means "for all assignments π that match $\langle L^{\text{now}}, L^{\text{fut}} \rangle$, $\Phi|_{\pi}$ is logically equivalent to $\psi|_{\pi}$ unless π is a **don't-care** assignment".
- Without ghost literals: No assignments are don't-care.
- ▶ With ghost literals: Some assignments are don't-care.

Correspondence of Sequents to Clauses and Cubes

- ► Consider a QBF with existential literals e₁...e_n and universal literals u₁...u_m.
- ► Clause $(e_1 \lor ... \lor e_n \lor u_1 \lor ... \lor u_m)$ in CNF Φ_{in} corresponds to sequent $\langle \{\neg e_1, ..., \neg e_n\}, \{\neg u_1, ..., \neg u_m\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{False}).$

Correspondence of Sequents to Clauses and Cubes

- ► Consider a QBF with existential literals e₁...e_n and universal literals u₁...u_m.
- ► Clause $(e_1 \lor ... \lor e_n \lor u_1 \lor ... \lor u_m)$ in CNF Φ_{in} corresponds to sequent $\langle \{\neg e_1, ..., \neg e_n\}, \{\neg u_1, ..., \neg u_m\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{False}).$
- Cube $(e_1 \land ... \land e_n \land u_1 \land ... \land u_m)$ in DNF Φ_{in} corresponds to sequent $\langle \{u_1, ..., u_m\}, \{e_1, ..., e_n\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{True}).$

Correspondence of Sequents to Clauses and Cubes

- ► Consider a QBF with existential literals e₁...e_n and universal literals u₁...u_m.
- ► Clause $(e_1 \lor ... \lor e_n \lor u_1 \lor ... \lor u_m)$ in CNF Φ_{in} corresponds to sequent $\langle \{\neg e_1, ..., \neg e_n\}, \{\neg u_1, ..., \neg u_m\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{False}).$
- Cube $(e_1 \land ... \land e_n \land u_1 \land ... \land u_m)$ in DNF Φ_{in} corresponds to sequent $\langle \{u_1, ..., u_m\}, \{e_1, ..., e_n\} \rangle \models (\Phi_{in} \Leftrightarrow \mathsf{True}).$
- Sequents generalize clauses/cubes because $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\Phi \Leftrightarrow \psi)$ can have ψ be a formula in terms of free variables.

Alternate Sequent Notation

• "
$$\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\exists \text{ loses } \Phi)$$
" means
" $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\Phi \Leftrightarrow \text{False})$ ".

• "
$$\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\forall \text{ loses } \Phi)$$
" means
" $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\Phi \Leftrightarrow \text{True})$ ".

Literal r is free

$$\langle L_1^{\text{now}} \cup \{r\}, L_1^{\text{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi_1)$$

 $\langle L_2^{\text{now}} \cup \{\neg r\}, L_2^{\text{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi_2)$

$$\langle L_1^{\text{now}} \cup L_2^{\text{now}}, L_1^{\text{fut}} \cup L_2^{\text{fut}} \cup \{r, \neg r\} \rangle \models (\Phi_{in} \Leftrightarrow \text{ite}(r, \psi_1, \psi_2))$$

Top-level algorithm

- 1. initialize_sequent_database();
- 2. $\pi_{cur} := \emptyset$; Propagate();
- 3. while (true) {

12. }

Top-level algorithm

- 1. initialize_sequent_database();
- 2. $\pi_{cur} := \emptyset$; Propagate();
- 3. while (true) {
- 4. while (π_{cur} doesn't match any database sequent) {
- 5. DecideLit();
- 6. Propagate();
- 7. }

12. }

Top-level algorithm

1. initialize_sequent_database();

```
2. \pi_{cur} := \emptyset; Propagate();
```

- 3. while (true) {
- 4. while (π_{cur} doesn't match any database sequent) {
- 5. DecideLit();
- 6. Propagate();
- 7. }
- 8. Learn();
- 9. if (learned seq has form $\langle \varnothing, L^{fut} \rangle \models (\Phi_{in} \Leftrightarrow \psi)$) return ψ ;
- 10. Backtrack();
- 11. Propagate();
- 12. }

Propagation

- Let seq be a sequent $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi)$ in database.
- ▶ If there is a literal $\ell \in L^{now}$ such that
 - 1. $\pi_{cur} \cup \{\ell\}$ matches seq, and
 - 2. ℓ is not downstream of any unassigned literals in $L^{\rm fut},$

then $\neg \ell$ is *forced*; it is added to the current assignment π_{cur} .

Propagation

- Let seq be a sequent $\langle L^{\text{now}}, L^{\text{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi)$ in database.
- ▶ If there is a literal $\ell \in L^{now}$ such that
 - 1. $\pi_{cur} \cup \{\ell\}$ matches seq, and
 - 2. ℓ is not downstream of any unassigned literals in $L^{\rm fut},$

then $\neg \ell$ is *forced*; it is added to the current assignment π_{cur} .

Propagation ensures that the solver never re-explores areas of the search space for which it already knows the answer.

Learning

func Learn() { 1. seq := (the database sequent that matches π_{cur}); 2. while (true) {

}

Learning

func Learn() { 1. seq := (the database sequent that matches π_{cur}); 2. while (true) { 3. r := (the most recently assigned literal in seq.L^{now}) 4. seq := Resolve(seq, antecedent[r]);

}

Learning

	<pre>func Learn() {</pre>
1.	seq := (the database sequent that matches π_{cur});
2.	while (true) {
3.	r := (the most recently assigned literal in seq.Lnow)
4.	<pre>seq := Resolve(seq, antecedent[r]);</pre>
5.	if (seq.L ^{now} = \varnothing or has_good_UIP(seq))
6.	return seq;
7.	}
	}

The quantifier type of r in Φ is Q $\langle L_1^{\text{now}} \cup \{r\}, L_1^{\text{fut}} \rangle \models (Q \text{ loses } \Phi_{in})$ $\langle L_2^{\text{now}} \cup \{\neg r\}, L_2^{\text{fut}} \rangle \models (Q \text{ loses } \Phi_{in})$ Opponent of Q owns all literals in L_1^{fut} r is not downstream of any ℓ such that $\ell \in L_1^{\text{fut}}$ and $\neg \ell \in (L_1^{\text{fut}} \cup L_2^{\text{fut}})$

 $\langle L_1^{\mathsf{now}} \cup L_2^{\mathsf{now}}, L_1^{\mathsf{fut}} \cup L_2^{\mathsf{fut}} \rangle \models (Q \text{ loses } \Phi_{in})$

The quantifier type of r in Φ is Q $\langle L_1^{\text{now}} \cup \{r\}, L_1^{\text{fut}} \rangle \models (Q \text{ loses } \Phi_{in})$ $\langle L_2^{\text{now}} \cup \{\neg r\}, L_2^{\text{fut}} \rangle \models (\Phi_{in} \Leftrightarrow \psi)$ Opponent of Q owns all literals in L_1^{fut} r is not downstream of any ℓ such that $\ell \in L_1^{\text{fut}}$ and $\neg \ell \in (L_1^{\text{fut}} \cup L_2^{\text{fut}})$

 $\langle L_1^{\mathrm{now}} \cup L_2^{\mathrm{now}}, \, L_1^{\mathrm{fut}} \cup L_2^{\mathrm{fut}} \cup \{\neg r\} \rangle \models (\Phi_{in} \Leftrightarrow \psi)$

Experimental Comparison

- Our solver: GhostQ.
- Compared to computational-learning solver from:
 B. Becker, R. Ehlers, M. Lewis, and P. Marin,
 "ALLQBF solving by computational learning" (ATVA 2012).
- Benchmarks (from same paper): synthesis from formal specifications.

Cactus Plot

CPU time (s)

Formula Size

Conclusion

- ► DPLL-based solver for open QBF.
- Sequents generalize clauses and cubes.
- Generates proof certificates.
- Our solver produces **unordered** BDDs.
 - Unordered because of unit propagation.
 - In our experience, often larger than OBDDs.
- ▶ More details: preprint of CP 2013 paper on Will Klieber's website.