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Open QBF

I Closed QBF: All variables quantified; answer is True or False.

I Open QBF: Contains free (unquantified) variables.

I Goal: Find equivalent propositional formula.

I E.g., given ∃x. x ∧ (y ∨ z), return y ∨ z.

I Applications: symbolic MC, synthesis from formal spec, etc.
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Outline

I Näıve Algorithm

I Introduce sequents that generalize clauses for open QBF in CNF

(without ghost variables)

I Experimental results

I Ghost variables: see paper.
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Näıve Algorithm

I Notation: “ite(x, φ1, φ2)” is a formula with an if-then-else:

ite(x, φ1, φ2) = (x ∧ φ1) ∨ (¬x ∧ φ2)

I Recursively Shannon-expand on free variables:

Φ = ite(x, Φ|x=True, Φ|x=False)

I Base case (no more free variables): Give to closed-QBF solver.
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Näıve Algorithm

1. function solve(Φ) {

2. if (Φ has no free variables)

3. return closed qbf solve(Φ);

4. x := (a free variable in Φ);

5. return ite(x, solve(Φ|x=True ),

6. solve(Φ|x=False ));

7. }
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Näıve Algorithm

1. function solve(Φ) {

2. if (Φ has no free variables)

3. return closed qbf solve(Φ);

4. x := (a free variable in Φ);

5. return ite(x, solve(Φ|x=True ),

6. solve(Φ|x=False ));

7. }

Builds OBDD if:
1. same branch order,

2. formula construction is memoized, and

3. ite(x, φ, φ) is simplified to φ.
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Näıve Algorithm

I Näıve Algorithm:

I Similar to DPLL in terms of branching.
I But lacks many optimizations that make DPLL fast:

I Non-chronological backtracking
I Clause learning

I Our open-QBF technique:

I Extend existing closed-QBF algorithm to allow free variables.
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Preliminaries

I Prenex Form: Q1~x1...Qn~xn. φ where φ has no quantifiers.

I In ∀x.∃y. φ, we say that y is downstream of x.

I ∃y occurs inside scope of ∀x.

I Free variables are upstream of all quantified variables.

I We identify assignment π with the set of literals made true by π.

I E.g., identify {(e1,True), (u2,False)} with {e1,¬u2}.

I Substitution: Φ|π substitutes assigned variables with values

(even if bound by quantifier, which gets deleted).
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QBF as a Game

I Existential variables are owned by Player ∃.

I Universal variables are owned by Player ∀.

I Players assign variables in quantification order.

I The goal of Player ∃ is to make Φ be true.

I The goal of Player ∀ is to make Φ be false.
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Properties of Clauses and Cubes

I Motivate definition of sequents.

I If π falsifies all literals in clause C in CNF Φ, then Φ|π = False.

I If π falsifies all existential literals in clause C in CNF Φ and

doesn’t satisfy any universal literals in C, then Φ|π = False.

I If π satisfies all universal literals in a cube C in a DNF Φ and

doesn’t falsify any existential literals in C, then Φ|π = True.

I Tautological clauses learned via long-distance resolution?

(Assuming ∀-reduction is done only on-the-fly, during unit prop.)
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〈Lnow, Lfut〉 Sequents

I Definition. A game-state specifier is a pair 〈Lnow, Lfut〉
consisting of two sets of literals, Lnow and Lfut.

I Definition. We say that 〈Lnow, Lfut〉 matches assignment π iff:

1. for every literal ` in Lnow, `|π = True, and

2. for every literal ` in Lfut, either `|π = True or ` 6∈ vars(π).
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I E.g., 〈{e}, {u}〉 matches {e} and {e, u},

but does not match {} or {e,¬u}.

I 〈Lnow, {`,¬`}〉 matches π only if π doesn’t assign `.
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〈Lnow, Lfut〉 Sequents

I Definition. A game-state specifier is a pair 〈Lnow, Lfut〉
consisting of two sets of literals, Lnow and Lfut.

I Definition. We say that 〈Lnow, Lfut〉 matches assignment π iff:

1. for every literal ` in Lnow, `|π = True, and

2. for every literal ` in Lfut, either `|π = True or ` 6∈ vars(π).

I Definition. “〈Lnow, Lfut〉 |= (Φ ⇔ ψ)” means “for all

assignments π that match 〈Lnow, Lfut〉, Φ|π is logically

equivalent to ψ|π unless π is a don’t-care assignment”.

I Without ghost literals: No assignments are don’t-care.

I With ghost literals: Some assignments are don’t-care.

11



Correspondence of Sequents to Clauses and Cubes

I Consider a QBF with existential literals e1 ... en and

universal literals u1 ... um.

I Clause (e1 ∨ ... ∨ en ∨ u1 ∨ ... ∨ um) in CNF Φin corresponds to

sequent 〈{¬e1, ...,¬en}, {¬u1, ...,¬um}〉 |= (Φin ⇔ False).

I Cube (e1 ∧ ... ∧ en ∧ u1 ∧ ... ∧ um) in DNF Φin corresponds to

sequent 〈{u1, ..., um}, {e1, ..., en}〉 |= (Φin ⇔ True).

I Sequents generalize clauses/cubes because

〈Lnow, Lfut〉 |= (Φ ⇔ ψ) can have ψ be a

formula in terms of free variables.
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Alternate Sequent Notation

I “〈Lnow, Lfut〉 |= (∃ loses Φ)” means

“〈Lnow, Lfut〉 |= (Φ ⇔ False)”.

I “〈Lnow, Lfut〉 |= (∀ loses Φ)” means

“〈Lnow, Lfut〉 |= (Φ ⇔ True)”.
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Resolution rule for free variable

Literal r is free

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φin ⇔ ψ1)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ2)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {r,¬r}〉 |= (Φin ⇔ ite(r, ψ1, ψ2))
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Top-level algorithm

1. initialize_sequent_database();

2. πcur := ∅; Propagate();

3. while (true) {

4. while (πcur doesn’t match any database sequent) {

5. DecideLit();

6. Propagate();

7. }

8. Learn();

9. if (learned seq has form 〈∅, Lfut〉 |= (Φin ⇔ ψ)) return ψ;

10. Backtrack();

11. Propagate();

12. }
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Propagation

I Let seq be a sequent 〈Lnow, Lfut〉 |= (Φin ⇔ ψ) in database.

I If there is a literal ` ∈ Lnow such that

1. πcur ∪ {`} matches seq, and

2. ` is not downstream of any unassigned literals in Lfut,

then ¬` is forced ; it is added to the current assignment πcur.

I Propagation ensures that the solver never re-explores areas of the

search space for which it already knows the answer.
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Learning

func Learn() {

1. seq := (the database sequent that matches πcur);

2. while (true) {

3. r := (the most recently assigned literal in seq.Lnow)

4. seq := Resolve(seq, antecedent[r]);

5. if (seq.Lnow = ∅ or has good UIP(seq))

6. return seq;

7.

}

}
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Resolution rule for quantified variable (case 1)

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Q loses Φin)

Opponent of Q owns all literals in Lfut
1

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Q loses Φin)
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Resolution rule for quantified variable (case 2)

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ)

Opponent of Q owns all literals in Lfut
1

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2 )

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {¬r}〉 |= (Φin ⇔ ψ)
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Experimental Comparison

I Our solver: GhostQ.

I Compared to computational-learning solver from:

B. Becker, R. Ehlers, M. Lewis, and P. Marin,

“ALLQBF solving by computational learning” (ATVA 2012).

I Benchmarks (from same paper): synthesis from formal

specifications.
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Conclusion

I DPLL-based solver for open QBF.

I Sequents generalize clauses and cubes.

I Generates proof certificates.

I Our solver produces unordered BDDs.

I Unordered because of unit propagation.
I In our experience, often larger than OBDDs.

I More details: preprint of CP 2013 paper on Will Klieber’s website.
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