Extending DPLL-Based QBF Solvers

to Handle Free Variables

Will Klieber, Mikola$ Janota,
Joao Marques-Silva, Edmund Clarke

July 9, 2013

Open QBF

» Closed QBF: All variables quantified; answer is True or False.
» Open QBF: Contains free (unquantified) variables.
» Goal: Find equivalent propositional formula.

» E.g., given Jz. 2 A (yV2), return yV z.

Open QBF

Closed QBF: All variables quantified; answer is True or False.

v

v

Open QBF: Contains free (unquantified) variables.

v

Goal: Find equivalent propositional formula.

» E.g., given Jz. 2 A (yV2), return yV z.

v

Applications: symbolic MC, synthesis from formal spec, etc.

» Naive Algorithm

» Introduce sequents that generalize clauses for open QBF in CNF
(without ghost variables)

» Experimental results

» Ghost variables: see paper.

Naive Algorithm

» Notation: “ite(z, ¢1,¢2)" is a formula with an if-then-else:

ite(r, d1,92) = (T A d1) V (-2 A ¢2)

Naive Algorithm

» Notation: “ite(z, ¢1,¢2)" is a formula with an if-then-else:

ite(r, d1,92) = (T A d1) V (-2 A ¢2)

» Recursively Shannon-expand on free variables:

¢ = ite(x, (I)|x:Truea q)‘:p:False)

Naive Algorithm

» Notation: “ite(z, ¢1,¢2)" is a formula with an if-then-else:

ite(r, d1,92) = (T A d1) V (-2 A ¢2)

» Recursively Shannon-expand on free variables:
® = ite(z, P[;—Trues Plo—False)

» Base case (no more free variables): Give to closed-QBF solver.

Naive Algorithm

1. function solve(®d) {

2. if (P has no free variables)
3. return closed gbf _solve(®);
7 }

Naive Algorithm

function solve(®P) {
if (P has no free variables)
return closed gbf_solve(®);
x := (a free variable in ®);
return ite(x, solve(®|z=True),
solve(®|z=False)) ;

~N O OB W N

Naive Algorithm

1. function solve(®) {
2. f (P has no free variables)
3. return closed_gbf_solve(®d);
4. x := (a free variable in ®);
5. return ite(x, solve(®|z=True),
6. solve(®|r=False)) ;
7. %

Builds OBDD if:

1. same branch order,
2. formula construction is memoized, and
3. ite(z, ¢, ¢) is simplified to ¢.

Naive Algorithm

» Naive Algorithm:
» Similar to DPLL in terms of branching.
» But lacks many optimizations that make DPLL fast:

» Non-chronological backtracking
» Clause learning

» Our open-QBF technique:
» Extend existing closed-QBF algorithm to allow free variables.

Preliminaries

» Prenex Form: ;7...Q0,, 7). ¢ where ¢ has no quantifiers.

Preliminaries

» Prenex Form: ;7...Q0,, 7). ¢ where ¢ has no quantifiers.

» In Vz.dy. ¢, we say that y is downstream of x.
» dy occurs inside scope of V.

Preliminaries

» Prenex Form: ;7...Q0,, 7). ¢ where ¢ has no quantifiers.

» In Vz.dy. ¢, we say that y is downstream of x.
» dy occurs inside scope of V.

» Free variables are upstream of all quantified variables.

Preliminaries

» Prenex Form: ;7...Q0,, 7). ¢ where ¢ has no quantifiers.

v

In Vz.3y. ¢, we say that y is downstream of z.
» dy occurs inside scope of V.

v

Free variables are upstream of all quantified variables.

v

We identify assignment 7 with the set of literals made true by 7.
E.g., identify {(eq, True), (uo, False)} with {e1, ~us}.

v

Preliminaries

» Prenex Form: ;7...Q0,, 7). ¢ where ¢ has no quantifiers.

v

In Vz.3y. ¢, we say that y is downstream of z.

» dy occurs inside scope of V.

v

Free variables are upstream of all quantified variables.

v

We identify assignment 7 with the set of literals made true by 7.
E.g., identify {(eq, True), (uo, False)} with {e1, ~us}.

v

v

Substitution: ®|r substitutes assigned variables with values
(even if bound by quantifier, which gets deleted).

QBF as a Game

Existential variables are owned by Player .

v

v

Universal variables are owned by Player V.

v

Players assign variables in quantification order.

v

The goal of Player 3 is to make ® be true.

v

The goal of Player V is to make ® be false.

Properties of Clauses and Cubes

» Motivate definition of sequents.

» If 7 falsifies all literals in clause C' in CNF @, then ®|r = False.

Properties of Clauses and Cubes

» Motivate definition of sequents.
» If 7 falsifies all literals in clause C' in CNF @, then ®|r = False.

» If 7 falsifies all existential literals in clause C' in CNF & and
doesn’t satisfy any universal literals in C, then ®|r = False.

Properties of Clauses and Cubes

Motivate definition of sequents.

v

v

If 7 falsifies all literals in clause C' in CNF @, then ®|r = False.

If 7 falsifies all existential literals in clause C' in CNF & and
doesn’t satisfy any universal literals in C, then ®|r = False.

v

If 7 satisfies all universal literals in a cube C in a DNF & and
doesn't falsify any existential literals in C, then ®|x = True.

v

Properties of Clauses and Cubes

Motivate definition of sequents.

v

v

If 7 falsifies all literals in clause C' in CNF @, then ®|r = False.

If 7 falsifies all existential literals in clause C' in CNF & and
doesn’t satisfy any universal literals in C, then ®|r = False.

v

If 7 satisfies all universal literals in a cube C in a DNF & and
doesn't falsify any existential literals in C, then ®|x = True.

v

» Tautological clauses learned via long-distance resolution?
(Assuming V-reduction is done only on-the-fly, during unit prop.)

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and Lt.
» Definition. We say that (L%, L7t) matches assignment 7 iff:

1. for every literal ¢ in L™, ¢|x = True, and
2. for every literal £ in LfUt, either |7 = True or ¢ & vars(m).

10

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and Lt.
» Definition. We say that (L%, L7t) matches assignment 7 iff:

1. for every literal ¢ in L™, ¢|x = True, and
2. for every literal £ in LfUt, either |7 = True or ¢ & vars(m).

» E.g., ({e},{u}) matches {e} and {e,u},

10

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and Lt.

» Definition. We say that (L%, L7t) matches assignment 7 iff:

1. for every literal ¢ in L™, ¢|x = True, and
2. for every literal £ in LfUt, either |7 = True or ¢ & vars(m).

» E.g., ({e},{u}) matches {e} and {e,u},
but does not match {} or {e, —u}.

10

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and Lt.
» Definition. We say that (L%, L7t) matches assignment 7 iff:

1. for every literal ¢ in L™, ¢|x = True, and
2. for every literal £ in LfUt, either |7 = True or ¢ & vars(m).

» E.g., ({e},{u}) matches {e} and {e,u},
but does not match {} or {e, —u}.

» (L™ {¢,—~(}) matches 7 only if 7 doesn't assign /.

10

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and Lt.
» Definition. We say that (L%, L7t) matches assignment 7 iff:

1. for every literal ¢ in L™, ¢|x = True, and
2. for every literal ¢ in Lt, either ¢|x = True or £ & vars(n).

» Definition. “(L" L) |= (O < 1))" means “for all

assignments 7 that match (L™ LfUt) |7 is logically
equivalent to 9| unless 7 is a don’t-care assignment”.

11

(Lrow, L) Sequents

» Definition. A game-state specifier is a pair (L"", Lfut)
consisting of two sets of literals, L™ and Lt.
» Definition. We say that (L%, L7t) matches assignment 7 iff:

1. for every literal ¢ in L™, ¢|x = True, and
2. for every literal ¢ in Lt, either ¢|x = True or £ & vars(n).

» Definition. “(L" L) |= (O < 1))" means “for all
assignments 7 that match (L™ LfUt) |7 is logically
equivalent to 9| unless 7 is a don’t-care assignment”.

» Without ghost literals: No assignments are don't-care.

» With ghost literals: Some assignments are don't-care.

11

Correspondence of Sequents to Clauses and Cubes

» Consider a QBF with existential literals e ... e;, and
universal literals uq ... up,.

» Clause (¢1 V ...Vey V up V... Vuy) in CNF &, corresponds to
sequent ({—eq,...,men}, {—ug, ..., um}) = (P, < False).

12

Correspondence of Sequents to Clauses and Cubes

» Consider a QBF with existential literals e ... e;, and
universal literals uq ... up,.

» Clause (¢1 V ...Vey V up V... Vuy) in CNF &, corresponds to
sequent ({—eq,...,men}, {—ug, ..., um}) = (P, < False).

» Cube (e; A ... Aey A up A ... Auyy) in DNF @y, corresponds to
sequent ({uy,...,um}, {e1,...,en}) E (P < True).

12

Correspondence of Sequents to Clauses and Cubes

» Consider a QBF with existential literals e ... e;, and
universal literals uq ... up,.

» Clause (¢1 V ...Vey V up V... Vuy) in CNF &, corresponds to
sequent ({—eq,...,men}, {—ug, ..., um}) = (P, < False).

» Cube (e; A ... Aey A up A ... Auyy) in DNF @y, corresponds to
sequent ({uy,...,um}, {e1,...,en}) E (P < True).

» Sequents generalize clauses/cubes because
(Lrow Lfuty = (& < 1)) can have ¢ be a
formula in terms of free variables.

12

Alternate Sequent Notation

> (LMW LRty 1= (3 loses ®)" means
“(Lrow LRt = (® < False)”.

):
> “(LMoW LYY = (V loses ®)" means
LW LAY = (D < True)”.

13

Resolution rule for free variable

Literal r is free
(LI U {r}, L) k= (D4 < 1)
(L5™ U {=r}, LEY) |= (Bin < 1h2)

(LEY U L5, LY U LY U {r, =r}) (i & ite(r, 1, ¢2))

14

Top-level algorithm

1. initialize_sequent_database();
2. Teur = J; Propagate();

3. while (true) {

12, }

15

Top-level algorithm

initialize_sequent_database();
Tewr = &; Propagate();
while (true) {
while (mey, doesn't match any database sequent) {
DecidelLit();

Propagate();
}

~N O O W N

12, }

15

Top-level algorithm

= e
N = O

© 00 N O O b W N =

initialize_sequent_database();
Tewr = &; Propagate();

while (true) {

while (m¢yr doesn't match any database sequent) {
DecidelLit();
Propagate();

}

Learn() ;

if (learned seq has form (@, Lf'%) |= (®;, < 1)) return ©;

Backtrack();

Propagate();

15

> Let seq be a sequent (L"", L) = (&;, <) in database.
» If there is a literal £ € L"" such that

1. Teyr U {¢} matches seq, and
2. { is not downstream of any unassigned literals in LfUt,

then —/ is forced; it is added to the current assignment 7.y

16

> Let seq be a sequent (L"", L) = (&;, <) in database.
» If there is a literal £ € L"" such that

1. Teyr U {¢} matches seq, and
2. { is not downstream of any unassigned literals in LfUt,

then —/ is forced; it is added to the current assignment 7.y

» Propagation ensures that the solver never re-explores areas of the
search space for which it already knows the answer.

16

func Learn() {

1. seq := (the database sequent that matches m¢y;);
2. while (true) {
}
}

17

func Learn() {
seq := (the database sequent that matches 7¢y,);
while (true) {
(the most recently assigned literal in seq.Lnow)

ro:

W N -

seq := Resolve(seq, antecedent[r]);

17

~N O O W N

func Learn() {

seq := (the database sequent that matches m¢yr);
while (true) {
(the most recently assigned literal in seq.Lnow)

ro

seq := Resolve(seq, antecedent[r]);

if (seq.LBOV =& or has good UIP(seq))
return seq;

17

Resolution rule for quantified variable (case 1)

The quantifier type of r in ® is)

(LI U {7}, L) | (Q loses By)

(L U (=}, 15 = (Q loses By

Opponent of @ owns all literals in L

7 is not downstream of any ¢ such that ¢ € L and —¢ € (L"* U L")

<Lr110w U LBOW’ Lf1Ut U L‘;“t>): (Q loses (I)ln)

18

Resolution rule for quantified variable (case 2)

The quantifier type of r in ® is)

(LI U {7}, L) | (Q loses By)

(L U (o}, 18 b= (@4)

Opponent of @ owns all literals in L

7 is not downstream of any ¢ such that ¢ € L and —¢ € (L"* U L")

(LU L5, LU LS U {r}) (@4)

19

Experimental Comparison

» Our solver: GhostQ.

» Compared to computational-learning solver from:
B. Becker, R. Ehlers, M. Lewis, and P. Marin,
“ALLQBF solving by computational learning” (ATVA 2012).

» Benchmarks (from same paper): synthesis from formal
specifications.

20

Cactus Plot

800 T T T T T T
learner o

700 learner-d —<— 1

600 | learner-c —=—]

GQ

500
400
300

CPU time (s)

200
100

0
0 200 400 600 800 1000 1200 1400 1600 1800

instances 21

()]
NI
wn
0

>

S

| -~

o
L

™
o
—
X X
x %% X
x N %
X o %
X <X
x w X% i X -20
X XXX &mxxx% -
xx X&MM %K\ e
o g
BaE: £
B :
Kk
" g
X
X X
x —
xm L 5
pers —
XX
o
o
—
<t ™ N — o
o o o o o
— — — — —

09

22

learner-c

Conclusion

DPLL-based solver for open QBF.

v

v

Sequents generalize clauses and cubes.

» Generates proof certificates.

» Our solver produces unordered BDDs.
» Unordered because of unit propagation.
» In our experience, often larger than OBDDs.
» More details: preprint of CP 2013 paper on Will Klieber's website.

23

