
A Non-Prenex, Non-Clausal QBF Solver with
Game-State Learning

William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke?

Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania

Abstract. We describe a DPLL-based solver for the problem of quan-
tified boolean formulas (QBF) in non-prenex, non-CNF form. We make
two contributions. First, we reformulate clause/cube learning, extending
it to non-prenex instances. We call the resulting technique game-state
learning. Second, we introduce a propagation technique using ghost liter-
als that exploits the structure of a non-CNF instance in a manner that is
symmetric between the universal and existential variables. Experimental
results on the QBFLIB benchmarks indicate our approach outperforms
other state-of-the-art solvers on certain benchmark families, including
the tipfixpoint and tipdiam families of model checking problems.

Keywords: QBF, DPLL, non-clausal, non-prenex, clause learning

1 Introduction

Many problems in formal verification (among other areas) are naturally ex-
pressed in the language of QBF. Traditionally, QBF solvers have used conjunc-
tive normal form (CNF). Although CNF works well for SAT solvers, it hinders
the work of QBF solvers by impeding the ability to detect and learn from satis-
fying assignments. In fact, a family of problems that are trivially satisfiable in
negation-normal form (NNF) were experimentally found to require exponential
time (in the problem size) for existing CNF solvers [18].

Various techniques have been proposed for avoiding the drawbacks of a CNF
encoding. Zhang et al. have investigated dual CNF-DNF representations in
which a boolean formula is transformed into a combination of an equi-satisfiable
CNF formula and an equi-tautological DNF [18]. Sabharwal et al. have developed
a QBF modeling approach based a game-theoretic view of QBF [14]. Ansotegui
et al. have investigated the use of indicator variables [1]. These approaches all
help to alleviate the problems of a pure CNF encoding, but we argue that a

?
This research was sponsored by the GSRC under contract no. 1041377 (Princeton University), Na-
tional Science Foundation under contracts no. CCF0429120, no. CNS0926181, no. CCF0541245,
and no. CNS0931985, Semiconductor Research Corporation under contract no. 2005TJ1366, Gen-
eral Motors under contract no. GMCMUCRLNV301, Air Force (Vanderbilt University) under
contract no. 18727S3, International Collaboration for Advanced Security Technology of the Na-
tional Science Council, Taiwan, under contract no. 1010717, and the Office of Naval Research
under award no. N000141010188.

2 William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke

fully non-clausal approach can lead to even greater improvements, especially for
instances produced from deeply-nested circuits.

In addition to combined CNF-DNF techniques, fully non-clausal techniques
have recently been investigated. A prenex circuit-based DPLL solver with “don’t
care” reasoning and clause/cube learning has been developed by Goultiaeva et
al. [8]. A non-prenex NNF-based DPLL solver with dependency-directed (non-
chronological) backtracking, but without learning, was developed by Egly, Seidl,
and Woltran [4]. Non-clausal techniques using symbolic quantifier expansion
(rather than DPLL) have been developed by Lonsing and Biere [10] and by
Pigorsch and Scholl [13]. Giunchiglia et al. have developed a technique for mini-
scoping quantifiers (pushing quantifiers inward so as to minimize their scope)
[7]. Non-clausal representations have also been investigated in the context of
SAT solvers [9, 16, 5].

Most existing DPLL-based QBF solvers perform clause/cube learning. How-
ever, traditional clause/cube learning was designed for prenex QBF instances,
and it is not optimal for (or even directly applicable to) non-prenex QBF in-
stances. We reformulate clause/cube learning and extend it to the non-prenex
case. Additionally, we develop a new propagation technique using ghost liter-
als. Experimental results indicate that our approach can beat other state-of-
the-art solvers on fixed-point computation instances of the type found in the
tipfixpoint benchmark family.

2 Preliminaries

We consider non-prenex QBF formulas in negation-normal form1, as described
by the following abstract grammar:

φ ::= ei | ¬ei | ui | ¬ui | φ ∨ ... ∨ φ | φ ∧ ... ∧ φ | ∃ei φ | ∀ui φ

We label each conjunction and disjunction with a gate variable of the form gi,
as illustrated in Figure 1. The conjunction/disjunction labelled gi, together
with its quantifier prefix (if any), is labelled with the primed gate variable g′

i,
as illustrated in Figure 1. As indicated in the abstract grammar, each labelled
conjunction/disjunction may have any number of conjuncts/disjuncts.

∃e10

[
[∃e11 ∀u21

g1︷ ︸︸ ︷
(e10 ∧ e11 ∧ u21)]︸ ︷︷ ︸
g′

1

∧ [∀u22 ∃e30

g2︷ ︸︸ ︷
(e10 ∧ u22 ∧ e30)]︸ ︷︷ ︸
g′

2

]

Fig. 1. Example QBF instance with gate labels.

1 Our solver does not require the use of strict NNF. Subformulas containing no quan-
tifiers can be represented in circuit form.

A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning 3

The term “gate variable” arises from the circuit representation of a propositional
formula, in which a gate variable labels a logic gate.

Let “InFmla” denote the formula that the QBF solver is given as input. We
impose the following restriction on InFmla: Every variable in InFmla must be
quantified exactly once, and no variable may occur free (i.e., outside the scope of
its quantifier). The variables that occur in InFmla are said to be input variables.

We represent an assignment π by the set of literals assigned true by π. For
example, the assignment {e1,¬u2} assigns e1 true and assigns u2 false, while
leaving all other variables unassigned. We write “π(`)” to denote the value
(true, false, or undef) that π assigns to `, as defined as follows: π(`) = true if
` ∈ π, π(`) = false if ¬` ∈ π, and π(`) = undef otherwise. For any variable x,
we treat ¬¬x as equivalent to x. An assignment may not include both a variable
and its negation. An input assignment is an assignment in which every assigned
variable is an input variable (as opposed to a gate variable).

Definition 1 (Reduction). The reduction of a formula f under an input as-
signment π, denoted by “f |π”, is constructed from f as follows: For each vari-
able x which is assigned a value by π, we delete the quantifier of x and replace
each occurrence of x with its assigned value. For example, if π = {e1}, then
[∃e1.∀u2. (e1 ∧ u2)]|π = [∀u2. (true ∧ u2)]. Formally:

`|π =

{
π(`) if π(`) 6= undef

` if π(`) = undef

(f1 ∧ ... ∧ fn)|π = (f1|π) ∧ ... ∧ (fn|π)

(f1 ∨ ... ∨ fn)|π = (f1|π) ∨ ... ∨ (fn|π)

(∃x.f)|π =

{
f |π if π(x) 6= undef

∃x.(f |π) if π(x) = undef

(∀x.f)|π =

{
f |π if π(x) 6= undef

∀x.(f |π) if π(x) = undef

Given two input literals x and y, we say that x is upstream of y iff the scope of
the quantifier of x contains the quantifier of y. We say that a gate literal g is
upstream of an input literal y iff every variable that occurs in the subformula g
is upstream of y.

2.1 QBF as a Two-Player Game

It is helpful to view QBF as a game between two players, Player E and Player U.
We make the following formal definitions:

– The existentially quantified variables are owned by Player E.
– The universally quantified variables are owned by Player U.

Informally, the game formulation goes as follows. Throughout the course of the
game, the two players assign values to the variables that they own. The order in
which the players assign variables is the quantification order of the variables. On
each turn of the game, the owner of the outermost-quantified unassigned variable
assigns it a value. The goal of Player E is to make InFmla true, and the goal of

4 William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke

Player U is to make InFmla false. For non-prenex instances, we say that each
quantifier-prefixed subformula (e.g., g′

1 and g′
2 in Figure 1) is a subgame. It may

happen that two or more variables are quantified outermost; e.g., in Figure 1 on
page 2, after e10 is assigned a value, both e11 and u22 are quantified outermost.
In this case, two subgames have become independent of each other; they may
be played in parallel or in series.

Definition 2 (Winning under an assignment). Player U wins a formula f
under π iff f |π is false. Player E wins a formula f under π iff f |π is true. (See
Definition 1 for the meaning of f |π.) (It would be more proper to say “has a
winning strategy for” instead of “wins”, but for brevity, we’ll say simply “wins”.)

For example, in Figure 1, Player U wins g′
2 under the empty assignment, and

Player E wins g′
2 under {e10 : true, u22 : true}.

Proposition 1 Player E wins [∃x φ] under π if he wins φ under either π ∪ {x}
or π ∪ {¬x}. Player U wins [∀x φ] under π if he wins φ under either π ∪ {x} or
π ∪ {¬x}.

3 Symbolic Game States

In this section, we introduce game-state learning, a reformulation of clause/cube
learning. For prenex instances, the game-state formulation is isomorphic to
clause/cube learning; the differences are merely cosmetic. However, the game-
state formulation is more convenient to extend to the non-prenex case.

To motivate the notation of game-state learning, we start by reviewing certain
aspects of clause learning. Suppose the input formula InFmla is a prenex CNF
QBF whose first clause is (e1 ∨ e3 ∨ u4 ∨ e5). Under an assignment π, if all the
literals in the clause are false, then clearly InFmla|π is false. Moreover, if, under
π, all the clause’s existential literals are assigned false and none of the clause’s
universal literals are assigned true (i.e., they may either be assigned false or be
unassigned), then InFmla|π is false, since the universal player can win by making
all the universal literals in the clause false.

As shown in [20], when the QBF clause learning algorithm is applied to
∃e1∃e3∀u4∃e5∃e7. (e1 ∨ e3 ∨ u4 ∨ e5) ∧ (e1 ∨ ¬e3 ∨ ¬u4 ∨ e7) ∧ ...

it can yield the tautological learned clause (e1 ∨ u4 ∨ ¬u4 ∨ e5 ∨ e7). Although
counter-intuitive, this learned clause can be interpreted in the same way as a
non-tautological clause: Under an assignment π, if all the clause’s existential
literals are assigned false and none of the clause’s universal literals are assigned
true, then InFmla|π is false.

Learned cubes are similar: Under an assignment π, if all the cube’s universal
literals are assigned true and none of the cube’s existential literals are assigned
false, then InFmla|π is true. With game-state learning, we explicitly separate the
“must be true” literals from the “may be either true or unassigned” literals. (For
non-prenex instances, the division is more complicated than just existential-vs-
universal.) Instead of writing a cube (e1 ∨ u2 ∨¬e3), we will write a game-state
sequent 〈{u2}, {e1,¬e3}〉 |= (E wins InFmla).

A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning 5

Definition 3. A symbolic game state is a tuple 〈Lnow, Lfut〉, where Lnow is a set
of literals and Lfut is a set of input literals. 〈Lnow, Lfut〉 symbolically represents
(or matches) exactly those input assignments under which:

1. every literal in Lnow reduces to true, and
2. no literal in Lfut is assigned false — i.e., for every literal ` in Lfut, either
` is already true or ` has not yet been assigned a value (and therefore may
become true in the future).

For example, consider again the QBF instance in Figure 1 on page 2. The assign-
ment {¬e10} matches both 〈{¬g′

1}, ∅〉 and 〈{¬g′
1}, {u21,¬u21}〉 (because ¬e10

implies ¬g′
1), but not 〈{¬g′

1}, {e10}〉. No assignment matches 〈{¬e10}, {e10}〉.

Definition 4 (Winning under a game state). We say that player P wins
a formula f under a game state GS, written “GS |= (P wins f)”, iff P wins f
under all assignments that match GS. Additionally, we say that P loses f under
GS, written “GS |= (P loses f)”, iff the opponent of P wins f under GS.

For example, for the QBF instance in Figure 1:

– Neither player wins g′
1 under the game state 〈∅,∅〉, because Player U loses

under the matching assignment {e10, e11, u21} and Player E loses under the
matching assignment {¬e10}.

– Player U wins g′
1 under 〈∅, {¬u21}〉. For example, under the assignment

π= {e11}, g′
1|π is [∀u21 (e10 ∧ true ∧ u21)], which evaluates to false.

– Player E wins g′
1 under 〈{u21}, {e10, e11}〉.

In our solver, instead of learning clauses or cubes, we maintain a game-state
database with sequents of the form GS |= (P wins g′

i). It turns out that when-
ever we learn a new game-state sequent for a prenex instance, the literals owned
by the winner all go in Lfut, and the literals owned by the loser and the gate liter-
als go in Lnow. The relationship between learned game-state sequents and learned
clauses/cubes (for prenex instances) is as follows. 〈Lnow, Lfut〉 |= (U wins InFmla)
is equivalent to the learned clause [¬`1∨ ...∨¬`n] where {`1, ..., `n} = Lnow∪Lfut

(where Lnow contains the loser/gate literals and Lfut contains the winner literals).
This equivalence is easily verified using the interpretation of learned clauses
developed on the previous page. Likewise, 〈Lnow, Lfut〉 |= (E wins InFmla) is
equivalent to the learned cube [`1 ∧ ... ∧ `n] where {`1, ..., `n} = Lnow ∪ Lfut.

Proposition 2 If 〈Lnow ∪ {`}, Lfut〉 |= (P wins f), and ` is owned by Player P
and the quantifier of ` is inside f , then 〈Lnow, Lfut∪{`}〉 |= (P wins f), provided
that ¬` /∈ Lfut.

For example, consider the QBF instance ∀u1.∃e2. (u1 ⊕ e2), where “u1 ⊕ e2”
means “(u1 ∧ ¬e2) ∨ (¬u1 ∧ e2)”. If Player E wins under 〈{u1,¬e2},∅〉, then
Proposition 2 tells us that Player E wins under 〈{u1}, {¬e2}〉.

6 William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke

4 Algorithm

An overview of the top-level solver algorithm is provided in Figure 2. Initially,
the current assignment CurAsgn is empty. For non-prenex instances, we may
temporarily target in on a subgame of the input formula InFmla and ignore the
rest; the subgame being targetted is recorded in the TargFmla global variable.
On each iteration of the main loop, we first test to see if we know who wins
TargFmla under the current assignment. There are two cases:
– If the winner of TargFmla is unknown, then we call DecideLit, which picks

an unassigned input variable (from the first available quantifier block in the
prefix of TargFmla) and assigns it a value in CurAsgn. If there are no more
unassigned variables in the quantifier prefix of the current TargFmla, then
we pick a new TargFmla from among the unassigned immediate subformulas
of TargFmla and try again. After adding a new literal to CurAsgn, we call
Propagate to perform boolean constraint propagation (BCP).

– If the winner is known, then we call LearnNewGS to learn a new game-
state sequent, adding it to the database. If the new game-state sequent
reveals that InFmla evaluates to a value v under the empty assignment,
then we return v as our final answer. Otherwise, we backtrack. We follow
the well-known non-chronological backtracking technique, with the addition
that we must also undo changes to TargFmla as appropriate. (That is, if we
backtrack to the beginning of the kth decision level, then we must restore
TargFmla to the value that it held at the beginning of the kth decision level.
For this purpose, we maintain an array UndoTarg that maps each decision
level to the value of TargFmla to be restored.) After backtracking, the
newly-learned game-state sequent will force a literal, so we call Propagate
to perform BCP. (Is a literal forced even when we leave a subgame b by
restoring an old value of TargFmla during backtracking? Yes; ghosts of b
are forced, as per case 1(b) in Section 4.3.)

func Solve() {
CurAsgn = ∅;
TargFmla = InFmla;
while (true) {

if (the winner of TargFmla under CurAsgn is unknown) {
DecideLit(); // Picks new TargFmla if necessary.
Propagate();

} else {
GS = LearnNewGS();
if (TargFmla == InFmla and ∅ matches GS) return winner;
Backtrack to the earliest point at which GS will force a literal;
Propagate();

}
}

}

Fig. 2. Overview of top-level solver algorithm.

A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning 7

4.1 Ghost Literals

Goultiaeva et al. [8] introduce a powerful propagation technique for QBF that
significantly improves on existing QBF solvers on a variety of benchmarks. With
their technique, if the solver notices that a gate literal g must be true in order
for the existential player to win, then g becomes forced. However, this technique
is asymmetric between the existential and universal players. A gate literal g is
forced if it is needed for the existential player to win, but not if it is needed for the
universal player to win. We adapt this technique so that the universal variables
benefit from the same propagation technique as do the existential variables and
so that the learning procedure for satisfying assignments is just as powerful as
for falsifying assignments.

In a prenex solver, for each gate variable g, we would introduce two ghost
variables, g〈U〉 for Player U and g〈E〉 for Player E. A ghost literal g〈P 〉 would be
forced whenever we detect that Player P cannot win unless g is made true.

For our non-prenex solver, we need to consider subgames (quantifier-prefixed
subformulas, such as g′

1 and g′
2 in Figure 1). We introduce ghost variables of the

form g〈U, b〉 and g〈E, b〉 where b is a subgame which contains g as a subformula.
A ghost literal g〈P, b〉 becomes forced when we detect that Player P cannot win
subgame b without g being true. For example, consider the below QBF instance
(where g1 is some propositional formula involving e1, u2, and e3):

∃e1 ∀u2 ∃e3 ∀u4. [[∀u5. g1 ∨ u5]︸ ︷︷ ︸
g′

2

∧u4] ∨ [∀u6. ¬g1 ∨ u6]︸ ︷︷ ︸
g′

3

Under the empty assignment, g1〈E, g′
2〉 is forced (because Player E cannot win

g′
2 under ∅ unless g1 is true) and likewise ¬g1〈E, g′

3〉 is forced.
In order to simplify the propagation and learning procedures, we allow game

states to contain ghost literals. A game state with a ghost literal is said to
match the same input assignments as if the game state contained the corre-
sponding non-ghost gate literal; e.g., 〈Lnow ∪ {g〈P, b〉}, Lfut〉 matches the same
input assignments as 〈Lnow ∪ {g}, Lfut〉.

4.2 Initialization of Game-State Database

In CNF-based QBF solvers, the existential player owns the gate variables2, and
there are clauses (generated from the Tseitin transformation [17]) that ensure
that the existential player loses if he assigns a value to a gate variable that turns
out to be inconsistent with the inputs to the gate. For example, if g = e1 ∧ e2,
then Player E would lose if he assigns g = true and e1 = false.

In our solver, instead of generating clauses via the Tseitin transformation, we
generate game-state sequents. In a prenex solver, we would generate game-state
sequents that ensure that a player P loses if he assigns a ghost gate variable

2 For CNF solvers, gate variables are introduced when formulas are converted to CNF
via the Tseitin transformation [17]; these gate variables are existentially quantified.

8 William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke

a value inconsistent with the gate’s inputs. In our non-prenex solver, for each
subgame b, we generate game-state sequents that ensure that a player P loses
subgame b if he assigns a ghost gate variable g〈P, b〉 a value inconsistent with the
gate’s inputs. For example, if g = e1∧e2 and subformula g appears in a subgame
b, then Player E would lose b if he assigns g〈E, b〉 = true and e1 = false. We
construct such game-state sequents as follows. For every gate literal g, if g
labels a formula `1 ∧ ... ∧ `n (or ¬g labels a formula ¬`1 ∨ ... ∨ ¬`n), we add the
following game-state sequents for each player P ∈ {E, U} and each quantifier-
prefixed formula b which contains g as a subformula:

– 〈{`1, ..., `n,¬g}, ∅〉 |= (P loses b)
– 〈{¬`i, g}, ∅〉 |= (P loses b) for every i ∈ {1, ..., n}

For example, if g3 = ¬e1 ∨ ¬u2 and g3 is a subformula of a subgame g′
7, then

we add game-state sequents 〈{e1, u2, g3},∅〉 |= (E loses g′
7), 〈{¬e1,¬g3},∅〉 |=

(E loses g′
7), and 〈{¬u2,¬g3},∅〉 |= (E loses g′

7), among others.
After adding the game-state sequents to the database, we normalize them as

follows. Consider a game-state sequent of the form 〈Lnow, Lfut〉 |= (P loses b).
First, we use Proposition 2 (on page 5) to move input literals owned by the
winning player from Lnow to Lfut. Second, we replace each gate literal g in
Lnow with the ghost literal g〈P, b〉. For example, consider a game-state sequent
〈{e1, u2, g3},∅〉 |= (E loses g′

7). We move u2 using Proposition 2 (assuming
that the quantifier of u2 is within the formula g′

7) and replace g3 with g3〈E, g′
7〉,

yielding 〈{e1, g3〈E, g′
7〉}, {u2}〉 |= (E loses g′

7).
Recall that a ghost literal g〈P, b〉 should become forced when g must be

true in order for P to win b. Thus, for every quantifier-prefixed subformula
b, the ghost literals ¬b〈U, b〉 and b〈E, b〉 should be forced. To ensure that the
propagation procedure in Section 4.3 forces these literals, we add the following
game-state sequents for every gate variable b that labels a quantifier-prefixed
formula:

– 〈{b〈U, b〉},∅〉 |= (U loses b) (to force ¬b〈U, b〉)
– 〈{¬b〈E, b〉},∅〉 |= (E loses b) (to force b〈E, b〉)

4.3 Propagation and Forced Literals

CurAsgn may contain forced ghost literals, so in general we can’t say CurAsgn
is a match for a game-state in the sense of Definition 3, because CurAsgn is not
necessarily an input assignment. Instead, let us say that CurAsgn is a ghost
match for a game-state sequent 〈Lnow, Lfut〉 |= (P loses b) iff every literal in Lnow

is assigned true by CurAsgn and no literal in Lfut is assigned false by CurAsgn.
During the Propagate procedure, conceptually we examine each learned

game-state sequent GS of the form 〈Lnow, Lfut〉 |= (P loses b) in which none of
the literals in Lnow ∪Lfut are assigned false and b is a subformula of TargFmla.
There are three cases:

A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning 9

1. If all literals in Lnow are true, then CurAsgn is a ghost match for GS, so P
loses b under the current assignment.3 There are two subcases to consider:

(a) If b = TargFmla, then we know who wins TargFmla under the current
assignment, so we stop propagation and return to the Solve procedure.

(b) If b 6= TargFmla, then for all subgames s that contain b, the ghost vari-
ables b〈E, s〉 and b〈U, s〉 are forced to be false (if P=E) or true (if P=U).

2. If there is exactly one unassigned literal `U in Lnow, then ¬`U is forced if:
(1) `U is owned by P or is a ghost literal of the form g〈P, b〉, and
(2) `U is upstream of all unassigned literals in Lfut, and
(3) `U does not appear outside subgame b if `U is an input literal

(so that forcing ¬`U can’t cause P to lose a different subgame).
For example, consider again the QBF instance in Figure 1 on page 2. The
game-state sequent 〈{u22,¬g2〈U, g′

2〉}, {e10, e30}〉 |= (U loses g′
2) will force

¬u22 if CurAsgn = {¬g2〈U, g′
2〉, e10}. However, ¬u22 will not be forced if

CurAsgn = {¬g2〈U, g′
2〉, e30}, since e10 is upstream of u22, and thus Player U

can delay assigning a value to u22 until E has assigned a value for e10.

3. If more than one literal in Lnow is unassigned, then GS doesn’t force a literal.

When a game-state sequent GS forces a literal `, we set antecedent[`] =GS .

Watched Literals. We use a straightforward adaptation of the watched-literals
rule [11, 6]. For each game-state sequent 〈Lnow, Lfut〉 |= (P wins g), we watch two
literals in Lnow and one literal in Lfut.

Optimized Implementation of Ghost Literals. If a subformula g occurs
in a subgame b, and b itself occurs in a larger subgame s, then we say that this
occurrence of g is an indirect occurrence in s. For example, in Figure 1, e10

occurs directly in g′
1 and g′

2 but occurs only indirectly in InFmla.
If a subformula g occurs directly in only a single subgame b, then we only

need to explicitly record only two ghost variables, g〈U, b〉 and g〈E, b〉. For any
other quantified formula s that contains g as a subformula,

we infer g〈P, s〉 ∈ CurAsgn︸ ︷︷ ︸
(P needs g to win s)

iff g〈P, b〉 ∈ CurAsgn︸ ︷︷ ︸
(P needs g to win b)

and b〈P, s〉 ∈ CurAsgn︸ ︷︷ ︸
(P needs b to win s)

since the only way g can influence the value of s is via b. If a subformula g
occurs directly in multiple subgames, then we must record two ghost variables
(existential and universal) for each subgame in which it directly occurs.

3 Let CurAsgnI = {` | ` ∈ CurAsgn and ` is an input literal}. If all literals in Lnow are
input literals, then CurAsgnI matches GS, because all literals in Lnow are assigned
true by CurAsgnI and no literals in Lfut are assigned false by CurAsgnI . If there
are ghost literals in Lnow, then P is still doomed to lose b, because P needs the
corresponding gate literals to be true in order to win, but if these gate literals
become true, then CurAsgnI will match GS and P loses under GS.

10 William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke

4.4 Learning New Game States
As shown in Figure 2 on page 6, when it becomes known which player wins
TargFmla under the current assignment, we call LearnNewGS to learn a new
game-state sequent. The only way for it to become known who wins TargFmla
under CurAsgn is for CurAsgn to become a ghost match for a game-state sequent
in the database (see case 1(a) in Section 4.3). Thus, when we enter LearnNewGS,
the current assignment is a ghost match for some game state.

The procedure for learning a new game-state sequent is shown in Figure 3.
We first make a copy of the existing game state that is a ghost match for the
current assignment. We then remove the most recently forced literal in Lnow

(not owned by the winner) by discharging it via its antecedent, as detailed in
Figure 3. We continue to discharge until the Lnow slot either is empty or has a
good unique implication point (UIP), as determined by the criteria from [19]4,
or until we hit a literal quantified outside TargFmla.

For prenex instances, the procedure for discharging a forced literal is similar
to resolution in clause learning: If [x1∨ ...∨xn∨`] and [¬`∨y1∨ ...∨ym] are true,
then [x1∨...∨xn∨y1∨...∨ym] is also true. The basic argument for the soundness of
the discharge method goes as follows. Let 〈Lnow

A ∪{`}, Lfut
A 〉 |= (P wins f) be GS,

and let 〈Lnow
B ∪{¬`}, Lfut

B 〉 |= (P wins h) be the antecedent of `. Discharging ` via
its antecedent yields 〈Lnow

A ∪Lnow
B , Lfut

A ∪Lfut
B 〉 |= (P wins f). To simplify matters,

let us assume that ` is upstream of every literal in Lfut
B , so that ` is forced under

any assignment that matches 〈Lnow
B , Lfut

B 〉. Since P wins f under any assignment
that matches 〈Lnow

A ∪ {`}, Lfut
A 〉, we conclude that if an assignment π matches

both 〈Lnow
B , Lfut

B 〉 and 〈Lnow
A , Lfut

A 〉 (i.e., if π matches 〈Lnow
A ∪Lnow

B , Lfut
A ∪Lfut

B 〉) then
` is forced and P wins f .

func LearnNewGS() {
GS = GetMatchingGS().copy();
do { ` = (most recently forced literal in GS not owned by winner);

if (` is quantified outside TargFmla) break;
Discharge(GS, `);

} until (GS.now.IsEmpty() || HasGoodUIP(GS));
return GS;

}

func Discharge(GS, `) {
GS.now.remove(`);
GS.now = (GS.now ∪ (antecedent[`].now - {¬`}));
GS.fut = (GS.fut ∪ antecedent[`].fut);

}
Fig. 3. Overview of Learning Algorithm

4 Specifically, an input literal ` (owned by the loser) in 〈Lnow, Lfut〉 is a good UIP if
(1) the decision variable of `’s decision level belongs to the losing player, (2) every
literal in (Lnow \ {`}) belongs to an earlier decision level than `, and (3) every literal
in Lfut that is upstream of ` belongs to a decision level earlier than that of `.

A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning 11

Example. Consider the QBF below.

g′
5︷ ︸︸ ︷

∃e10

[
[∃e11 ∀u21.

g1︷ ︸︸ ︷
(e11 ∧ u21)∨

g2︷ ︸︸ ︷
(e11 ∧ ¬u21)]︸ ︷︷ ︸

g′
3

∨ [∀u22∀u23. e10 ∧ u22 ∧ u23]︸ ︷︷ ︸
g′

4

]

Fig. 4. Example non-prenex QBF instance

1. The initial assignment includes g〈E, g′〉 and ¬g〈U, g′〉 for g ∈ {g3, g4, g5}.
2. 〈{g1〈U, g′

3〉,¬g3〈U, g′
3〉},∅〉 |= (E wins g′

3) forces ¬g1〈U, g′
3〉.

3. 〈{g2〈U, g′
3〉,¬g3〈U, g′

3〉},∅〉 |= (E wins g′
3) forces ¬g2〈U, g′

3〉.

4. Player E decides to assign e10 = true.
5. All the variables in the outermost quantifier prefix are now assigned, so

we must pick a subformula to investigate. We pick g′
3 as the new target

subformula.

6. Player E decides to assign e11 = true.
7. 〈{u21,¬g1〈U, g′

3〉}, {e11}〉 |= (E wins g′
3) forces ¬u21.

8. 〈{¬u21,¬g2〈U, g′
3〉}, {e11}〉 |= (E wins g′

3) is a (ghost) match for the cur-
rent assignment. Since g′

3 is the current TargFmla, we learn a game state.
We discharge ¬u21, then ¬g2〈U, g′

3〉, then ¬g1〈U, g′
3〉, and finally ¬g3〈U, g′

3〉,
yielding the new game-state sequent 〈∅, {e11}〉 |= (E wins g′

3).

9. We now backtrack, removing e11 and e10 from the current assignment and
reverting TargFmla to InFmla.

10. Having backtracked, our newly learned game-state sequent now forces
g3〈U, g′

5〉.
11. 〈{g3〈U, g′

5〉,¬g5〈U, g′
5〉},∅〉 |= (E wins InFmla) matches current assignment.

12. We learn the new game-state sequent 〈∅, {e11}〉 |= (E wins InFmla).
13. The empty assignment matches this new game-state, so our final answer is

that InFmla = true.

5 Experimental Results

We implemented the ideas in this paper in a solver which we call GhostQ. In
our experimental results, GhostQ always did at least as well as CirQit and it
outperformed Qube on the k, tipdiam, and tipfixpoint families.

We ran GhostQ on the non-CNF instances from QBFLIB on 2.66 GHz ma-
chine with a timeout of 300 seconds. For comparison we show the results for
CirQit published in [8] (which were conducted on a 2.8 GHz machine with a time-
out of 1200 seconds). (CirQit is not publicly available.) As shown in Table 1,
GhostQ performs better CirQit on every benchmark family except consistency.

12 William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke

Table 1. Comparison between GhostQ and CirQit.

Family inst. GhostQ CirQit

Seidl 150 150 (1606 s) 147 (2281 s)
assertion 120 12 (141 s) 3 (1 s)
consistency 10 0 (0 s) 0 (0 s)
counter 45 40 (370 s) 39 (1315 s)
dme 11 11 (13 s) 10 (15 s)
possibility 120 14 (274 s) 10 (1707 s)
ring 20 18 (28 s) 15 (60 s)
semaphore 16 16 (4 s) 16 (7 s)

Total 492 261 (2435 s) 240 (5389 s)

Table 2. Comparison between GhostQ and Qube.

Family inst. GhostQ Qube
bbox-01x 450 171 (133 s) 341 (1192 s)
bbox design 28 19 (256 s) 28 (15 s)
bmc 132 43 (266 s) 49 (239 s)
k 61 42 (355 s) 13 (55 s)
s 10 10 (1 s) 10 (5 s)
tipdiam 85 72 (143 s) 60 (235 s)
tipfixpoint 196 165 (503 s) 100 (543 s)
sort net 53 0 (0 s) 19 (176 s)
all other 121 9 (38 s) 23 (227 s)

Total 1136 531 (1695 s) 643 (2687 s)

Table 3. Comparison between GhostQ and Non-DPLL Solvers.

Timeout 60 s Timeout 600 s
Family inst. GhostQ Quantor sKizzo GhostQ AIGsolve
bbox-01x 450 171 130 166 178 173
bbox design 28 19 0 0 22 23
bmc 132 43 106 83 51 30
k 61 42 37 47 51 56
s 10 10 8 8 10 10
tipdiam 85 72 23 35 72 77
tipfixpoint 196 165 8 25 170 133
sort net 53 0 27 1 0 0
all other 121 9 49 31 17 35

Total 1136 531 388 396 571 537

In Tables 1–2, we give the number of instances solved and the time needed to
solve them. (Times shown do not include time spent trying to solve instances
where the solver timed out.) In Table 3, we give the number of instances solved.

A Non-Prenex, Non-Clausal QBF Solver with Game-State Learning 13

The ring and semaphore families consist of prenex instances. The other families
are non-prenex, so our solver took advantage of its ability to perform non-prenex
game-state learning. During testing of our solver, it was noted that non-prenex
learning was especially helpful on the dme family.5

We compared GhostQ to the state-of-the-art solvers Qube 6.6 [7], Quantor
3.0 [3], and sKizzo 0.8.2 [2]. We ran these solvers on the QBFLIB QBFEVAL
2007 benchmarks [12] on a 2.66 GHz machine, with a time limit of 60 seconds
and a memory limit of 1 GB. The results are shown in Tables 2 and 3. We
also show the results for AIGsolve published in [13], but these numbers are not
directly comparable because they were obtained on a different machine and with
a timeout of 600 seconds.

For the CNF benchmarks, we wrote a script to reverse-engineer the QDI-
MACS file to circuit form and convert it to our solver’s input format. (This is
similar to the technique in [13], but we also looked for “if-then-else” gates of the
form g = (x ? y : z).) Of the four other solvers shown in Tables 2 and 3, Qube
is the only other DPLL-based solver, so it is most similar to our solver. Our
experimental results show that GhostQ does better than Qube on the tipdiam
and tipfixpoint families (which concern diameter and fixpoint calculations for
model checking problems on the TIP benchmarks) and on the k family.

The use of ghost literals can help GhostQ in two ways: (1) By treating the
gate literals specially instead of treating them as belonging to the existential
player, we can more readily detect satisfactions and we can learn more powerful
cubes; (2) By using universal ghost literals, we have a more powerful propagation
procedure for the universal input literals. (We did not perform unprenexing on
any of the originally-CNF benchmarks, so our use of game-state learning doesn’t
improve performance here.) To further investigate, we turned off downward
propagation of universal ghost literals; on most families the effect was negligible,
but on tipfixpoint we solved only 149 instances instead of 165.

6 Conclusion

In this paper, we have made two contributions. First, we have introduced the
concept of symbolic game states and used this concept to reformulate clause/cube
learning and extend it to the non-prenex case. Using game states, we have also
been able to reformulate the techniques for conflict/satisfaction analysis, BCP,
and non-chronological backtracking. In all cases, we give a unified presentation
which is applicable to both the existential and universal players, instead of using
separate terminology and notation for the two players. Further, game states are
‘well-behaved’ theoretically, in that we no longer need learn and store tautologi-
cal clauses (or contradictory cubes). Our second contribution is introducing the
concept of ghost literals, allowing us to improve upon the propagation technique
introduced in [8] by eliminating the asymmetry between the players so that

5 The dme family instances were originally given in prenex form, but we pushed the
quantifiers inward as a preprocessing step. The unprenexing time was about 0.8
seconds per instance and is included in our solver’s total time shown in the table.

14 William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke

the technique can reduce the search space for both the universal and existen-
tial players (instead of only the existential player). Experiments show that our
techniques work particularly well on certain benchmarks related to formal veri-
fication. For future work, it may be worthwhile to investigate whether the ideas
of dynamic partitioning [15] can be extended to allow dynamic unprenexing.

References

1. C. Ansótegui, C. P. Gomes, and B. Selman. The Achilles’ Heel of QBF. In AAAI
2005.

2. M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In LPAR 2004.
3. A. Biere. Resolve and Expand. In SAT 2004.
4. U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex Form. In ECAI

2006.
5. M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining strengths of

circuit-based and CNF-based algorithms for a high-performance SAT solver. In DAC
2002.

6. I. P. Gent, E. Giunchiglia, M. Narizzano, A. G. D. Rowley, and A. Tacchella. Watched
Data Structures for QBF Solvers. In SAT 2003.

7. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifier structure in search based
procedures for QBFs. In DATE 2006.

8. A. Goultiaeva, V. Iverson, and F. Bacchus. Beyond CNF: A Circuit-Based QBF Solver.
In SAT 2009.

9. H. Jain, C. Bartzis, and E. M. Clarke. Satisfiability Checking of Non-clausal Formulas
Using General Matings. In SAT 2006.

10. F. Lonsing and A. Biere. Nenofex: Expanding NNF for QBF Solving. In SAT 2008.
11. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineer-

ing an Efficient SAT Solver. In DAC 2001.
12. M. Narizzano, L. Pulina, and A. Tacchella. QBFEVAL. http://www.qbfeval.org/.
13. F. Pigorsch and C. Scholl. Exploiting structure in an AIG based QBF solver. In DATE

2009.
14. A. Sabharwal, C. Ansótegui, C. P. Gomes, J. W. Hart, and B. Selman. QBF Modeling:

Exploiting Player Symmetry for Simplicity and Efficiency. In SAT 2006.
15. H. Samulowitz and F. Bacchus. Dynamically Partitioning for Solving QBF. In SAT

2007.
16. C. Thiffault, F. Bacchus, and T. Walsh. Solving Non-clausal Formulas with DPLL

Search. In Constraint Programming – CP 2004.
17. G. S. Tseitin. On the complexity of derivations in the propositional calculus. Studies

in Constructive Mathematics and Mathematical Logic, Part II, ed. A.O. Slisenko, 1968.
18. L. Zhang. Solving QBF by Combining Conjunctive and Disjunctive Normal Forms.

In AAAI 2006.
19. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Conflicts

in Quantified Boolean Formula Evaluation. In Constraint Programming – CP 2002.
20. L. Zhang and S. Malik. Conflict Driven Learning in a Quantified Boolean Satisfiability

Solver. In ICCAD 2002, 2002.

