
Solving QBF with Free Variables

William Klieber1, Mikoláš Janota2, Joao Marques-Silva2,3, and Edmund Clarke1

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 IST/INESC-ID, Lisbon, Portugal
3 University College Dublin, Ireland

Abstract. An open quantified boolean formula (QBF) is a QBF that
contains free (unquantified) variables. A solution to such a QBF is a
quantifier-free formula that is logically equivalent to the given QBF.
Although most recent QBF research has focused on closed QBF, there
are a number of interesting applications that require one to consider
formulas with free variables. This article shows how clause/cube learning
for DPLL-based closed-QBF solvers can be extended to solve QBFs with
free variables. We do this by introducing sequents that generalize clauses
and cubes and allow learning facts of the form “under a certain class
of assignments, the input formula is logically equivalent to a certain
quantifier-free formula”.

1 Introduction

In recent years, significant effort has been invested in developing efficient solvers
for Quantified Boolean Formulas (QBFs). So far this effort has been almost
exclusively directed at solving closed formulas — formulas where each variable is
either existentially or universally quantified. However, in a number of interesting
applications (such as symbolic model checking and automatic synthesis of a
boolean reactive system from a formal specification), one needs to consider open
formulas, i.e., formulas with free (unquantified) variables. A solution to such a
QBF is a formula equivalent to the given one but containing no quantifiers and
using only those variables that appear free in the given formula. For example, a
solution to the open QBF formula ∃x. (x ∧ y) ∨ z is the formula y ∨ z.

This article shows how DPLL-based closed-QBF solvers can be extended to
solve QBFs with free variables. In [14], it was shown how clause/cube learning
for DPLL-based QBF solvers can be reformulated in terms of sequents and ex-
tended to non-CNF, non-prenex formulas. This technique uses ghost variables
to handle non-CNF formulas in a manner that is symmetric between the exis-
tential and universal quantifiers. We show that this sequent-based technique can
be naturally extended to handle QBFs with free variables.

A näıve way to recursively solve an open QBF Φ is shown in Figure 1.
Roughly, we Shannon-expand on the free variables until we’re left with only
closed-QBF problems, which are then handed to a closed-QBF solver. As an
example, consider the formula (∃x. x ∧ y), with one free variable, y. Substitut-
ing y with true in Φ yields (∃x. x); this formula is given to a closed-QBF solver,

function solve(Φ) {
if (Φ has no free variables) {return closed_qbf_solve(Φ);}
x := (a free variable in Φ);
return ite(x, solve(Φ with x substituted with True),

solve(Φ with x substituted with False));
}

Fig. 1. Naive algorithm. The notation “ite(x, φ1, φ2)” denotes a formula with an
if-then-else construct that is logically equivalent to (x ∧ φ1) ∨ (¬x ∧ φ2).

which yields true. Substituting y with false in Φ immediately yields false. So, our
final answer is the formula (y ? true : false), which simplifies to y. In general, if
the free variables are always branched on in the same order, then the algorithm
effectively builds an ordered binary decision diagram (OBDD) [7], assuming that
the ite function is memoized and performs appropriate simplification.

The above-described näıve algorithm suffers from many inefficiencies. In
terms of branching behavior, it is similar to the DPLL algorithm, but it lacks
non-chronological bracktracking and an equivalent of clause learning. The main
contribution of this paper is to show how an existing closed-QBF algorithm can
be modified to directly handle formulas with free variables by extending the
existing techniques for non-chronological backtracking and clause/cube/sequent
learning.

2 Preliminaries

Grammar. We consider prenex formulas of the form Q1X1...QnXn. φ, where
Qi ∈ {∃,∀} and φ is quantifier-free and represented as a DAG. The logical
connectives allowed in φ are conjunction, disjunction, and negation. We say
that Q1X1...QnXn is the quantifier prefix and that φ is the matrix.

Assignments. Let π be a partial assignment of boolean values to variables. For
convenience, we identify π with the set of literals made true by π. For example,
we identify the assignment {(e1, true), (u2, false)} with the set {e1,¬u2}. We
write “vars(π)” to denote the set of variables assigned by π.

Quantifier Order. In a formula such as ∀x.∃y. φ, where the quantifier of y
occurs inside the scope of the quantifier of x, and the quantifier type of x is
different from the quantifier type of y, we say that y is downstream of x.
Likewise, we say that x is upstream of y. All quantified variables in a formula
are considered downstream of all free variables in the formula. In the context of
an assignment π, we say that a variable is an outermost unassigned variable iff
it is not downstream of any variables unassigned by π.

2

QBF as a Game. A closed QBF formula Φ can be viewed as a game between
an existential player (Player ∃) and a universal player (Player ∀):

– Existentially quantified variables are owned by Player ∃.
– Universally quantified variables are owned by Player ∀.
– Players assign variables in quantification order (starting with outermost).
– The goal of Player ∃ is to make Φ be true.
– The goal of Player ∀ is to make Φ be false.
– A player owns a literal ` if the player owns var(`).

If both players make the best moves possible, then the existential player will win
iff the formula is true, and the universal player will win if the formula is false.

Substitution. Given a partial assignment π, we define “Φ|π” to be the result
of the following: For every assigned variable x, we replace all occurrences of x
in Φ with the assigned value of x (and delete the quantifier of x, if any).

Gate variables. We label each conjunction and disjunction with a gate variable.
If a formula φ is labelled by a gate variable g, then ¬φ is labelled by ¬g. The
variables originally in the formulas are called “input variables”, in distinction to
gate variables.

2.1 Tseitin Transformation’s Undesired Effects in QBF

The Tseitin transformation [20] is the usual way of converting a formula into
CNF. In the Tseitin transformation, all the gate variables (i.e., Tseitin variables)
are existentially quantified in the innermost quantification block and clauses are
added to equate each gate variable with the subformula that it represents. For
example, consider the following formula:

Φin := ∃e. ∀u. (e ∧ u)︸ ︷︷ ︸
g1

∨ (¬e ∧ ¬u)︸ ︷︷ ︸
g2

This formula is converted to:

Φ′in = ∃e.∀u. ∃g. (g1 ∨ g2) ∧ (g1 ⇔ (e ∧ u)) ∧ (g2 ⇔ (¬e ∧ ¬u)) (1)

The biconditionals defining the gate variables are converted to clauses as follows:

(g1 ⇔ (e ∧ u)) = (¬e ∨ ¬u ∨ g1) ∧ (¬g1 ∨ e) ∧ (¬g1 ∨ u)

Note that the Tseitin transformation is asymmetric between the existential and
universal players: In the resulting CNF formula, the gate variables are existen-
tially quantified, so the existential player (but not the universal player) loses if
a gate variable is assigned inconsistently with the subformula that it represents.
For example, in Equation 1, if e|π = false and g1|π = true, then the existential
player loses Φ′in|π. This asymmetry can be harmful to QBF solvers. For example,
consider the QBF

∀x.∃y. y ∨ ψ(x)︸ ︷︷ ︸
g1

(2)

3

This formula is trivially true. A winning move for the existential player is to
make y be true, which immediately makes the matrix of the formula true, re-
gardless of ψ. Under the Tseitin transformation, Equation 2 becomes:

∀x.∃y.∃g. (y ∨ g1) ∧ (clauses equating gate variables)

Setting y to be true no longer immediately makes the matrix true. Instead, for
each assignment of universal variables x, the QBF solver must actually find a
satisfying assignment to the gate variables. This makes it much harder to detect
when the existential player has won. Experimental results [1,22] indicate that
purely CNF-based QBF solvers would, in the worst case, require time exponential
in the size of ψ to solve the CNF formula, even though the original problem
(before translation to CNF) is trivial.

3 Ghost Variables and Sequents

We employ ghost variables to provide a modification of the Tseitin transforma-
tion that is symmetric between the two players. The idea of using a symmetric
transformation was first explored in [22], which performed the Tseitin transfor-
mation twice: once on the input formula, and once on its negation. Similar ideas
have been used to handle non-prenex formulas in [14] and to handle “don’t care”
propagation in [12].

For each gate variable g, we introduce two ghost variables: an existentially
quantified variable g∃ and a universally quantified variable g∀. We say that g∃

and g∀ represent the formula labeled by g. Ghost variables are considered to be
downstream of all input variables.

We now introduce a semantics with ghost variables for the game formulation
of QBF. As in the Tseitin transformation, the existential player should lose if an
existential ghost variable g∃ is assigned a different value than the subformula that
it represents. Additionally, the universal player should lose if an universal ghost
variable g∀ is assigned a different value than the subformula that it represents.

In this paper, we never consider formulas (other than single literals) in which
ghost variables occur as actual variables. In particular, if Φ is the input formula
to the QBF solver, then in a substitution Φ|π, ghost variables in π have no effect.

Definition 1 (Consistent assignment to ghost literal). Given a quantifier
type Q ∈ {∃,∀} and an assignment π, we say that a ghost literal gQ is assigned
consistently under π iff gQ|π = (the formula represented by gQ)|π.

Definition 2 (Winning under a total assignment). Given a formula Φ, a
quantifier type Q ∈ {∃,∀}, and an assignment π to all the input variables and a
subset of the ghost variables, we say “Player Q wins Φ under π” iff:

• Φ|π = true if Q is ∃, and
• Φ|π = false if Q is ∀, and
• Every ghost variable owned by Q in vars(π) is assigned consistently.

(Intuitively, a winning player’s ghost variables must “respect the encoding”).

4

For example, if Φ = ∃e.∀u. (e∧ u) and g labels (e∧ u) then neither player wins
Φ under {¬e, u, g∀,¬g∃}. The existential player loses because Φ|π = false, and
the universal player loses because g∀|π 6= (the formula represented by g∀)|π.

Definition 3 (Losing under a total assignment). Given a formula Φ and
an assignment π that assigns all the input variables, we say “Player Q loses Φ
under π” iff Player Q does not win Φ under π.

Definition 4 (Losing under a partial assignment). Given a formula Φ, an
assignment π, and an outermost unassigned input variable x, we say “Player Q
loses Φ under π” iff either:

• Player Q loses Φ under both π ∪ {(x, true)} and π ∪ {(x, false)}, or
• Q’s opponent owns x and Player Q loses Φ under either π ∪ {(x, true)} or
π ∪ {(x, false)}.

For example, consider a formula Φ = ∃e. x ∧ e, where x is a free variable. The
existential player loses Φ under {¬x} and under {¬e}. Neither player can be
said to lose Φ under the empty assignment, because the value of Φ depends on
the free variable x. Now let us make a few general observations about when a
player loses under an arbitrary partial assignment.

Observation 1. If Φ|π = true, then Player ∀ loses Φ under π.

Observation 2. If Φ|π = false, then Player ∃ loses Φ under π.

Observation 3. If a ghost variable owned by Q in vars(π) is assigned inconsis-
tently under π, then Player Q loses Φ under π.

Observation 4. If the opponent of Q owns a literal ` that is unassigned under
π, and Q loses Φ under π ∪ {`}, then Q loses Φ under π.

Definition 5 (Game-State Specifier, Match). A game-state specifier is
a pair 〈Lnow, Lfut〉 consisting of two sets of literals, Lnow and Lfut. We say that
〈Lnow, Lfut〉 matches an assignment π iff:

1. for every literal ` in Lnow, `|π = true, and
2. for every literal ` in Lfut, either `|π = true or ` 6∈ vars(π).

For example, 〈{u}, {e}〉 matches the assignments {u} and {u, e}, but does not
match {} or {u,¬e}. Note that, for any literal `, if {`,¬`} ⊆ Lfut, then
〈Lnow, Lfut〉 matches an assignment π only if π doesn’t assign `. The intuition
behind the names “Lnow” and “Lfut” is as follows: Under the game formulation of
QBF, the assignment π can be thought of as a state of the game, and π matches
〈Lnow, Lfut〉 iff every literal in Lnow is already true in the game and, for every
literal ` in Lfut, it is possible that ` can be true in a future state of the game.

Definition 6 (Game Sequent). The sequent “〈Lnow, Lfut〉 |= (Q loses Φ)”
means “Player Q loses Φ under all assignments that match 〈Lnow, Lfut〉.”

5

As an example, let Φ be the following formula:

∀u.∃e. (e ∨ ¬u) ∧ (u ∨ ¬e) ∧

g3︷ ︸︸ ︷
(x1 ∨ e)

Note that sequent 〈{u}, {e}〉 |= (∀ loses Φ) holds true: in any assignment π that
matches it, Φ|π = true. However, 〈{u},∅〉 |= (∀ loses Φ) does not hold true: it
matches the assignment {u,¬e}, under which Player ∀ does not lose Φ. Finally,
〈{g∀3}, {e,¬e}〉 |= (∀ loses Φ) holds true. Let us consider why Player ∀ loses Φ
under the assignment {g∀3}. The free variable x1 is the outermost unassigned
variable, so under Definition 4, Player ∀ loses under {g∀3} iff Player ∀ loses under
both {g∀3 , x1} and {g∀3 ,¬x1}. Under {g∀3 , x1}, Player ∀ loses because Φ|{g∀3 , x1}
evaluates to true. Under {g∀3 ,¬x1}, Player ∀ loses because e is owned by the
opponent of Player ∀ and g∀3 is assigned inconsistently under {g∀3 ,¬x1,¬e}.

Note that a clause (`1 ∨ ... ∨ `n) in a CNF formula Φin is equivalent to the
sequent 〈{¬`1, ...,¬`n}, ∅〉 |= (∃ loses Φin). (Sequents in this form can also be
considered similar to nogoods [19].) Likewise, a cube (`1 ∧ ... ∧ `n) in a DNF
formula Φin is equivalent to the sequent 〈{`1, ..., `n}, ∅〉 |= (∀ loses Φin).

3.1 Sequents with Free Variables

Above, we introduced sequents that indicate if a player loses a formula Φ. Now,
we will generalize sequents so that they can indicate that Φ evaluates to a
quantifier-free formula involving the free variables. To do this, we first intro-
duce a logical semantics for QBF with ghost variables. Given a formula Φ and
an assignment π that assigns all the input variables, we want the semantic eval-
uation JΦKπ to have the following properties:

1. JΦKπ = true iff the existential player wins Φ under π.
2. JΦKπ = false iff the universal player wins Φ under π.

Note that the above properties cannot be satisfied in a two-valued logic if both
players lose Φ under π. So, we use a three-valued logic with a third value dontcare.
We call it “don’t care” because we are interested in the outcome of the game
when both players make the best possible moves, but if both players fail to win,
then clearly at least one of the players failed to make the best possible moves.
In our three-valued logic, a conjunction of boolean values evaluates to false if
any conjunct is false, and otherwise it evaluates to dontcare if any conjunct
is dontcare. Disjunction is defined analogously. The negation of dontcare is
dontcare. In a truth table:

x y x ∧ y x ∨ y
true dontcare dontcare true
false dontcare false dontcare

6

Definition 7. Given an assignment π to all the input variables and a subset of
the ghost variables, we define JΦKπ as follows:

JΦKπ :=

true if Player ∃ wins Φ under π
false if Player ∀ wins Φ under π
dontcare if both players lose Φ under π

For convenience in defining JΦKπ for a partial assignment π, we assume that the
formula is prepended with a dummy “quantifier” block for free variables. For
example, (∃e. e ∧ z) becomes (Fz.∃e. e ∧ z), where F denotes the dummy block
for free variables. If Φ contains free variables unassigned by π then JΦKπ is a
formula in terms of these free variables. We define JΦKπ as follows for a partial
assignment π that assigns only a proper subset of the input variables:

JQx.ΦKπ = JΦKπ if x ∈ vars(π)
J∃x. ΦKπ = JΦK(π ∪ {x}) ∨ JΦK(π ∪ {¬x}) if x 6∈ vars(π)
J∀x. ΦKπ = JΦK(π ∪ {x}) ∧ JΦK(π ∪ {¬x}) if x 6∈ vars(π)
JFx. ΦKπ = x ? JΦK(π ∪ {x}) : JΦK(π ∪ {¬x}) if x 6∈ vars(π)

The notation “x ? φ1 : φ2” denotes a formula with an if-then-else construct that
is logically equivalent to (x ∧ φ1) ∨ (¬x ∧ φ2). Note that the branching on the
free variables here is similar to the Shannon expansion [17].

Remark. Do we really need to add the dummy blocks for free variables and
have the rule for JFx. ΦKπ in Definition 7? Yes, because if π contains a ghost
literal gQ that represents a formula containing variables free in Φ, then it doesn’t
make sense to ask if gQ is assigned consistently under π unless all the variables
in the formula represented by gQ are assigned by π.

Definition 8 (Sometimes-Dontcare). A formula φ is said to be sometimes-
dontcare iff there is an assignment π under which φ evaluates to dontcare. For
example, (x ∨ dontcare) is sometimes-dontcare, while (x ∨ (x ∧ dontcare)) is not
sometimes-dontcare (because it evaluates to true if x is true and evaluates to
false if x is false).

Definition 9 (Free Sequent). The sequent “〈Lnow, Lfut〉 |= Φ ⇔ ψ” means
“for all assignments π that match 〈Lnow, Lfut〉, if JΦKπ is not sometimes-dontcare,
then JΦKπ is logically equivalent to ψ|π”.

Remark. The sequent definitions in Definitions 9 and 6 are related as follows:
• “〈Lnow, Lfut〉 |= (∃ loses Φ)” means the same as “〈Lnow, Lfut〉 |= (Φ⇔ false)”.
• “〈Lnow, Lfut〉 |= (∀ loses Φ)” means the same as “〈Lnow, Lfut〉 |= (Φ⇔ true)”.

We treat a game sequent as interchangeable with the corresponding free sequent.

Sequents of the form 〈Lnow, Lfut〉 |= Φ ⇔ ψ extend clause/cube learning by
allowing ψ to be a formula (in terms of the variables free in Φ) in addition to the
constants true and false. This enables handling of formulas with free variables.

7

4 Algorithm

The top-level algorithm, shown in Figure 2, is based on the well-known DPLL
algorithm, except that sequents are used instead of clauses. Similar to how
SAT solvers maintain a clause database (i.e., a set of clauses whose conjunction
is equisatisfiable with the original input formula Φin), our solver maintains a
sequent database. A SAT solver’s clause database is initialized to contain exactly
the set of clauses produced by the Tseitin transformation of the input formula
Φin into CNF. Likewise, our sequent database is initialized (§ 4.1) to contain a
set of sequents analogous to the clauses produced by the Tseitin transformation.

In the loop on lines 4–7, the solver chooses an outermost unassigned literal,
adds it to πcur, and performs boolean constraint propagation (BCP). BCP may
add further literals to πcur, as described in detail in § 4.4; such literals are referred
to as forced literals, in distinction to the literals added by DecideLit, which are
referred to as decision literals. The stopping condition for the loop is when the
current assignment matches a sequent already in the database. (The analogous
stopping condition for a SAT solver would be when a clause is falsified.) When
this stopping condition is met, the solver performs an analysis similar to that of
clause learning [18] to learn a new sequent (line 8). If the Lnow component of
the learned sequent is empty, then the solver has reached the final answer, which
it returns (line 9). Otherwise, the solver backtracks to the earliest decision level
at which the newly learned sequent will trigger a forced literal in BCP. (The
learning algorithm guarantees that this is possible.) The solver then performs
BCP (line 11) and returns to the inner loop at line 4.

The intuition behind BCP for quantified variables is fairly straightforward; a
literal owned by Q is forced by a sequent if the sequent indicates that Q need to
make ` true to avoid losing. For free variables, the intuition is slightly different.
Free variables are forced to prevent the solver from re-exploring parts of the

1. initialize_sequent_database();
2. πcur := ∅; Propagate();

3. while (true) {
4. while (πcur doesn’t match any database sequent) {
5. DecideLit();
6. Propagate();
7. }
8. Learn();
9. if (learned seq has form 〈∅, Lfut〉 |= (Φin ⇔ ψ)) return ψ;

10. Backtrack();
11. Propagate();
12. }

Fig. 2. Top-Level Algorithm. Details have been omitted for sake of clarity.

8

search space that it has already seen, so that the solver is continuously making
progress in exploring the search space, thereby guaranteeing it would eventually
terminate (given enough time and memory). (Actually, this intuition also applies
to quantified variables.)

The solver maintains a list of assigned literals in the order in which they were
assigned; this list is referred to as the trail [9]. Given a decision literal `d, we
say that all literals that appear in the trail after `d but before any other decision
literal belong to the same decision level as `d.

For prenex formulas without free variables, the algorithm described here is
operationally very similar to standard DPLL QBF solvers, except that Lnow and
Lfut do not need to be explicitly separated, since Lnow always consists exactly of
all the loser’s literals. However, for formulas with free variables, it is necessary
to explicitly record which literals belong in Lnow and which in Lfut.

4.1 Initial Sequents

We initialize the sequent database to contain a set of initial sequents, which
correspond to the clauses produced by the Tseitin transformation of the input
formula Φin. The set of initial sequents must be sufficient to ensure the loop on
line 4–6 of Figure 2 (which adds unassigned literals to the current assignment
until it matches a sequent in the database) operates properly. That is, for every
possible total assignment π, there must be at least one sequent that matches π.

First, let us consider a total assignment π in which both players assign all
their ghost variables consistently (Definition 1). In order to handle this case, we
generate the following two initial sequents, where gin is the label of the input
formula Φin: 〈{¬g∃in},∅〉 |= (∃ loses Φin) and 〈{g∀in},∅〉 |= (∀ loses Φin).

Since all ghost variables are assigned consistently in π, it follows that, for
each gate g, g∃|π must equal g∀|π, since both g∃ and g∀ must each be assigned
the same value as the formula that g labels. In particular, g∃in|π must be equal
to g∀in|π, so π must match exactly one of the two above initial sequents.

Now let us consider a total assignment π in which at least one player assigns
a ghost variable inconsistently. In order to handle this case, we generate a set of
initial sequents for every conjunction and disjunction in Φin. Let g∗ be the label
of an arbitrary conjunction in Φin of the form(

x1 ∧ ... ∧ xn ∧ φ1︸︷︷︸
g1

∧ ... ∧ φm︸︷︷︸
gm

)

where x1 through xn are input literals. The following initial sequents are pro-
duced from this conjunction for each Q ∈ {∃,∀}:

1. 〈{gQ
∗ , ¬xi},∅〉 |= (Q loses Φin) for i ∈ {1, ..., n}

2. 〈{gQ
∗ , ¬gQ

i },∅〉 |= (Q loses Φin) for i ∈ {1, ...,m}

3. 〈{¬gQ
∗ , x1, ..., xn, g

Q
1 , ..., g

Q
m},∅〉 |= (Q loses Φin)

9

Now let gQ
∗ denote a ghost literal such that (1) gQ

∗ is inconsistently assigned under
π and (2) no proper subformula of the formula represented by gQ

∗ is labelled by
a inconsistently-assigned ghost variable. Then π must match one of the above-
listed initials sequents.

4.2 Normalization of Initial Sequents

Note that all the initial sequents have the form 〈Lnow, Lfut〉 |= (Q loses Φ) where
Lfut = ∅. We normalize these sequents by moving all literals owned by Q’s
opponent from Lnow to Lfut, in accordance with the following inference rule:

The opponent of Q owns `, and ¬` 6∈ Lfut

〈Lnow ∪ {`}, Lfut〉 |= (Q loses Φ)

〈Lnow, Lfut ∪ {`}〉 |= (Q loses Φ)

To prove the above inference rule, we consider an arbitrary assignment π that
matches 〈Lnow, Lfut ∪ {`}〉, assume that the premises of inference rule hold true,
and prove that Player Q loses under π:

1. π matches 〈Lnow, Lfut ∪ {`}〉 (by assumption).
2. π ∪ {`} matches 〈Lnow ∪ {`}, Lfut〉 (using the premise that ¬` 6∈ Lfut).
3. Q loses Φ under π ∪ {`} (by the premise 〈Lnow ∪ {`}, Lfut〉 |= (Q loses Φ)).
4. Q loses Φ under π (by Observation 4 on page 5).

4.3 Properties of Sequents in Database

After the initial sequents have been normalized (as described in § 4.2), the solver
maintains the following invariants for all sequents in the sequent database, in-
cluding sequents added to the database as a result of learning (§ 4.5):

1. In a sequent of the form 〈Lnow, Lfut〉 |= (Q loses Φin):
(a) Every literal in Lnow either is owned by Q or is free in Φin.
(b) Every literal in Lfut is owned by the opponent of Q.

2. In a sequent of the form 〈Lnow, Lfut〉 |= (Φin ⇔ ψ), every variable in ψ
appears both positively and negatively in Lfut (i.e., if r occurs in ψ, then
{r,¬r} ⊆ Lfut). This is guaranteed by the learning algorithm in § 4.5.

4.4 Propagation

The Propagate procedure is similar to that of closed-QBF solvers. Consider a
sequent 〈Lnow, Lfut〉 |= (Φin ⇔ ψ) in the sequent database. If, under πcur,

1. there is exactly one unassigned literal ` in Lnow, and
2. no literals in Lnow ∪ Lfut are assigned false, and
3. ` is not downstream of any unassigned literals in Lfut,

10

then ¬` is forced — it is added to the current assignment πcur. In regard to the
3rd condition, if an unassigned literal r in Lfut is upstream of `, then r should get
assigned before `, and if r gets assigned false, then ` shouldn’t get forced at all by
the sequent. Propagation ensures that the solver never re-explores areas of the
search space for which it already knows the answer, ensuring continuous progress
and eventual termination. It is instructive to consider how the propagation rule
applies in light of the properties of sequents discussed in § 4.3:

1. A sequent of the form 〈Lnow, Lfut〉 |= (Q loses Φin) can force a literal that
is either owned by Q or free in Φin; it cannot force a literal owned by Q’s
opponent. If ` is owned by Q, then the reason for forcing ¬` is intuitive: the
only way for Q to avoid losing is to add ¬` to the current assignment. If `
is free in Φin, then ¬` is forced because the value of JΦinKπcur ∪ {`} is already
known and the solver shouldn’t re-explore that same area of the search space.

2. A sequent of the form 〈Lnow, Lfut〉 |= (Φin ⇔ ψ), where ψ contains free
variables, can only force a literal that is free in Φin. Although Lnow can
contain literals owned by Player ∃ and Player ∀, such literals cannot be
forced by the sequent. To prove this, we consider two cases: either there
exists a variable v that occurs in ψ and is assigned by πcur, or all variables
that occur ψ are left unassigned by πcur. If there is variable v in ψ that is
assigned by πcur, then πcur cannot match 〈Lnow, Lfut〉 |= (Φin ⇔ ψ), since
{v,¬v} ⊆ Lfut. If there is a variable v in ψ that is left unassigned by πcur,
then 〈Lnow, Lfut〉 |= (Φin ⇔ ψ) cannot force any quantified variable, since v
occurs in Lfut and all quantified variables are downstream of free variable v.

We employ a variant of the watched-literals rule designed for SAT solvers [16]
and adapted for QBF solvers [10]. For each sequent 〈Lnow, Lfut〉 |= (Φ⇔ ψ), we
watch two literals in Lnow and one literal in Lfut.

4.5 Learning

In the top-level algorithm in Figure 2, the solver performs learning (line 8) after
the current assignment πcur matches a sequent in the database. The learning
procedure is based on the clause learning introduced for SAT in [18] and adapted
for QBF in [24]. We use inference rules shown in Figure 4 to add new sequents
to the sequent database. These rules, in their Lnow components, resemble the
resolution rule used in SAT (i.e., from (A∨r)∧(¬r∨B) infer A∨B). The learning
algorithm ensures that the solver remembers the parts of the search space for
which it has already found an answer. This, together with propagation, ensures
that solver eventually covers all the necessary search space and terminates.

The learning procedure, shown in Figure 3, works as follows. Let seq be the
database sequent that matches the current assignment πcur. Let r be the literal
in the Lnow component of seq that was most recently added to πcur (i.e., the
latest one in the trail). Note that r must be a forced literal (as opposed to a
decision literal), because only an outermost unassigned literal can be picked as
a decision literal, but if r was outermost immediately before it added to πcur,

11

func Learn() {
seq := (the database sequent that matches πcur);
do {

r := (the most recently assigned literal in seq.Lnow)
seq := Resolve(seq, antecedent[r]);

} until (seq.Lnow = ∅ or has good UIP(seq));
return seq;

}
Fig. 3. Procedure for learning new sequents

Resolving on a literal r owned by Player Q (case 1):

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Q loses Φin)

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 〉 |= (Q loses Φin)

Resolving on a literal r owned by Player Q (case 2):

The quantifier type of r in Φ is Q

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Q loses Φin)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ)

r is not downstream of any ` such that ` ∈ Lfut
1 and ¬` ∈ (Lfut

1 ∪ Lfut
2)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {¬r}〉 |= (Φin ⇔ ψ)

Resolving on a variable r that is free in Φin:

Literal r is free

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φin ⇔ ψ1)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ2)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {r,¬r}〉 |= (Φin ⇔ (r ? ψ1 : ψ2))

Fig. 4. Resolution-like inference rules.

12

then no unassigned literal in the Lfut component of seq was upstream of r, so
seq would have forced ¬r in accordance with § 4.4. We use the inference rules
in Figure 4 to infer a new sequent from seq and the antecedent of r (i.e., the
sequent that forced r). This is referred to as resolving due to the similarity of
the inference rules to the clause resolution rule. We stop and return the newly
inferred sequent if it has a “good” unique implication point (UIP) [24], i.e., if
there is a literal ` in the Lnow component such that

1. Every literal in (Lnow \ {`}) belongs to an earlier decision level than `,
2. Every literal in Lfut upstream of ` belongs to a decision level earlier than `.
3. If seq has the form 〈Lnow, Lfut〉 |= (Q loses Φin), then the decision variable

of the decision level of ` is not owned by the opponent of Q.

Otherwise, we resolve the sequent with the antecedent of the most recently as-
signed literal in its Lnow component, and continue this process until the stopping
conditions above are met or Lnow is empty. Note that if the most recently as-
signed literal in Lnow is a decision literal, then it is a good UIP.

Note that in the resolution rule for resolving on a free variable r, we add
both r and ¬r to Lfut. This is not necessary for soundness of the resolution
itself. Rather, it is to ensure that the properties in § 4.3 hold true. Without
these properties, a quantified variable could be forced by a sequent that is not
equivalent to a clause or a cube.

Example. Below, we give several applications of the resolution rules. For
brevity, we omit free variables from the Lfut component.

∃e3. (i1 ∧ e3)︸ ︷︷ ︸
g5

∨ (i2 ∧ ¬e3)︸ ︷︷ ︸
g4

1. Start: 〈{¬i1,¬i2}, {}〉 |= (Φin ⇔ false)

2. Resolve ¬i1 via 〈{i1,¬g∀5}, {e3}〉 |= (Φin ⇔ true)
Result: 〈{¬i2,¬g∀5}, {e3}〉 |= (Φin ⇔ i1)

3. Resolve ¬i2 via 〈{i2,¬g∀4}, {¬e3}〉 |= (Φin ⇔ true)
Result: 〈{¬g∀5 ,¬g∀4}, {e3,¬e3}〉 |= (Φin ⇔ (i1 ∨ i2))

4. Resolve ¬g∀4 via 〈{g∀4}, {}〉 |= (Φin ⇔ true)
Result: 〈{¬g∀5}, {e3,¬e3,¬g∀4}〉 |= (Φin ⇔ (i1 ∨ i2))

5. Resolve ¬g∀5 via 〈{g∀5}, {}〉 |= (Φin ⇔ true)
Result: 〈{}, {e3,¬e3,¬g∀4 ,¬g∀5}〉 |= (Φin ⇔ (i1 ∨ i2))

4.6 Justification of inference rules

The first inference rule in Figure 4 is analogous to long-distance resolution [23]
and can be proved by similar methods (e.g., [2]). Intuitively, if the current

13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 ti

m
e

(s
)

instances

learner
learner-d
learner-c

GQ

100

101

102

103

104

105

100 101 102 103

G
Q

learner-c

Fig. 5. Time and size comparisons, instances solved by all solvers in less than 10 s are
not included in the time comparison.

assignment matches 〈Lnow
1 ∪Lnow

2 , Lfut
1 ∪Lfut

2 〉, then the opponent of Q can make
Q lose Φin by assigning true to all the literals in Lfut

1 that are upstream of r. This
forces Q to assign r = false to avoid matching the first sequent in the premise of
the inference rule, but assigning r = false makes the current assignment match
the second sequent in the premise.

If the current assignment πcur matches the sequent in the conclusion of the
second inference rule, there are two possibilities. For simplicity, assume that
πcur assigns all free variables and that neither Lfut

1 nor Lfut
2 contains any free

literals (since, as mentioned earlier, free literals can be removed from Lfut without
affecting soundness of the sequent). If Q loses ψ under πcur, then the situation
is similar to first inference rule. If the opponent of Q loses ψ under πcur, then
Q can make his opponent lose Φin by assigning r = false, thereby making the
current assignment match the second sequent of the premise.

For the third inference rule, we don’t need a condition about r not being
downstream of other literals, since no free variable is downstream of any variable.

5 Experimental Results

We extended the existing closed-QBF solver GhostQ [14] to implement the tech-
niques described in this paper. For comparison, we used the solvers and load-
balancer benchmarks from [3].4 The benchmarks contain multiple alternations
of quantifiers and are derived from problems involving the automatic synthesis
of a reactive system from a formal specification. The experimental results were
obtained on Intel Xeon 5160 3-GHz machines with 4 GB of memory. The time
limit was 800 seconds and the memory limit to 2 GB.

4 The results do not exactly match the results reported in [3] because we did not
preprocess the QDIMACS input files. We found that sometimes the output of the
preprocessor was not logically equivalent to its input. With the unpreprocessed
inputs, the output formulas produced by the learner family of solvers were always
logically equivalent to the output formulas of GhostQ.

14

There are three solvers from [3], each with a different form of the output:
CDNF (a conjunction of DNFs), CNF, and DNF. We will refer to these solvers
as “Learner” (CNDF), “Learner-C” (CNF), and “Learner-D” (DNF). Figure 5
compares these three solvers with GhostQ on the “hard” benchmarks (those
that not all four solvers could solve within 10 seconds). As can be seen on the
figure, GhostQ solved about 1600 of these benchmarks, Learner-C solved about
1400, and Learner-D and Learner each solved about 1200. GhostQ solved 223
instances that Learner-C couldn’t solve, while Learner-C solved 16 instances
that GhostQ couldn’t solve. GhostQ solved 375 instances that neither Learner-
DNF nor Learner could solver, while there were only 2 instances that either
Learner-DNF or Learner could solve but GhostQ couldn’t solve.

Figure 5 shows a comparison of the size of the output formulas for GhostQ
and Learner-C, indicating that the GhostQ formulas are often significantly larger.
The size is computed as 1 plus the number of edges in the DAG representation
of the formula, not counting negations, and after certain simplifications. E.g.,
the size of x is 1, the size of ¬x is also 1, and the size of x ∧ y is 3.

6 Related Work

Ken McMillan [15] proposed a method to use SAT solvers to perform quantifier
elimination on formulas of the form ∃x. φ, generating CNF output. This problem
(i.e, given a formula ∃x. φ, return a logically equivalent quantifier-free CNF
formula) has received attention recently. Brauer, King, and Kriener [6] designed
an algorithm that combines model enumeration with prime implicant generation.
Goldberg and Manolios [11] developed a method based on dependency sequents;
experimental results show that it works very well on forward and backward
reachability on the Hardware Model Checking Competition benchmarks. For
QBFs with arbitrary quantifier prefixes, the only other work of which we are
aware is that of Becker, Ehlers, Lewis, and Marin [3], which uses computational
learning to generate CNF, DNF, or CDNF formulas, and that of Benedetti and
Mangassarian [5], which adapts sKizzo [4] for open QBF. The use of SAT solvers
to build unordered BDDs [21] and OBDDs [13] has also been investigated.

7 Conclusion

This paper has shown how a DPLL-based closed-QBF solver can be extended
to handle free variables. The main novelty of this work consists of generaliz-
ing clauses/cubes (and the methods involving them), yielding sequents that can
include a formula in terms of the free variables. Our extended solver GhostQ
produces unordered BDDs, which have several favorable properties [8]. However,
in practice, the formulas tended to fairly large in comparison to equivalent CNF
representations. Unordered BDDs can often be larger than equivalent OBDDs,
since logically equivalent subformulas can have multiple distinct representations
in an unordered BDD, unlike in an OBDD. Although our BDDs are necessar-
ily unordered due to unit propagation, in future work it may be desirable to
investigate techniques aimed at reducing the size of the output formula.

15

References

1. C. Ansótegui, C. P. Gomes, and B. Selman. The Achilles’ Heel of QBF. In AAAI
2005.

2. V. Balabanov and J.-H. R. Jiang. Unified QBF certification and its applications.
Formal Methods in System Design, 41(1):45–65, 2012.

3. B. Becker, R. Ehlers, M. D. T. Lewis, and P. Marin. ALLQBF Solving by Com-
putational Learning. In ATVA, 2012.

4. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. In CADE, 2005.
5. M. Benedetti and H. Mangassarian. QBF-Based Formal Verification: Experience

and Perspectives. JSAT, 2008.
6. J. Brauer, A. King, and J. Kriener. Existential Quantification as Incremental SAT.

In CAV, 2011.
7. R. E. Bryant. Graph-based algorithms for boolean function manipulation. Com-

puters, IEEE Transactions on, 100(8):677–691, 1986.
8. A. Darwiche and P. Marquis. A Knowledge Compilation Map. J. Artif. Intell.

Res. (JAIR), 17:229–264, 2002.
9. N. Eén and N. Sörensson. An Extensible SAT-solver. In E. Giunchiglia and A. Tac-

chella, editors, SAT, pages 502–518, 2003.
10. I. P. Gent, E. Giunchiglia, M. Narizzano, A. G. D. Rowley, and A. Tacchella.

Watched Data Structures for QBF Solvers. In SAT 2003.
11. E. Goldberg and P. Manolios. Quantifier elimination by Dependency Sequents. In

G. Cabodi and S. Singh, editors, FMCAD, pages 34–43. IEEE, 2012.
12. A. Goultiaeva and F. Bacchus. Exploiting QBF Duality on a Circuit Representa-

tion. In AAAI, 2010.
13. J. Huang and A. Darwiche. Using DPLL for Efficient OBDD Construction. In

SAT, 2004.
14. W. Klieber, S. Sapra, S. Gao, and E. M. Clarke. A Non-prenex, Non-clausal QBF

Solver with Game-State Learning. In SAT, 2010.
15. K. L. McMillan. Applying SAT Methods in Unbounded Symbolic Model Checking.

In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404 of Lecture Notes in
Computer Science, pages 250–264. Springer, 2002.

16. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In DAC 2001.

17. C. E. Shannon. The Synthesis of Two Terminal Switching Circuits. Bell System
Technical Journal, 28:59–98, 1949.

18. J. P. M. Silva and K. A. Sakallah. GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220–227, 1996.

19. R. M. Stallman and G. J. Sussman. Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis. Artif. Intell.,
9(2):135–196, 1977.

20. G. S. Tseitin. On the complexity of derivation in propositional calculus. Studies
in constructive mathematics and mathematical logic, 2(115-125):10–13, 1968.

21. R. Wille, G. Fey, and R. Drechsler. Building free binary decision diagrams using
SAT solvers. Facta universitatis-series: Electronics and Energetics, 2007.

22. L. Zhang. Solving QBF by Combining Conjunctive and Disjunctive Normal Forms.
In AAAI 2006.

23. L. Zhang and S. Malik. Conflict Driven Learning in a Quantified Boolean Satisfi-
ability Solver. In ICCAD 2002.

24. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Con-
flicts in Quantified Boolean Formula Evaluation. In CP 2002.

16

	Solving QBF with Free Variables

