GhostQ-PG QBF Solver Description (2017)

William Klieber

Carnegie Mellon University
1 Overview

GhostQ [3] has not changed much since 2012, when CEGAR learning [2] was
added. A new feature for 2017 is an enhancement to the preprocessor to have
some support for the Plaisted-Greenbaum encoding. Three configurations of
GhostQ have been submitted to QBFEVAL’17:

1. ghostqg-pg-cegar: Plaisted-Greenbaum and CEGAR learning.
2. ghostgq-pg-plain: Plaisted-Greenbaum, but without CEGAR learning.
3. ghostq-cegar: Unchanged from the 2016 version (no Plaisted-Greenbaum).

2 Reverse Engineering for Plaisted-Greenbaum (cf. [1])

In the Tseitin encoding, the gate definition ¢ = x1 V ... V z,, is encoded by the
following clauses: (—gV 1V ..V a,), (¢V 1), ..., (9 V-x,). During
unit propagation, the binary clauses (i.e., clauses with exactly two literals) will
force g = true if any x; becomes true. The single non-binary clause will force
g = false if all the x; become false. The Plaisted-Greenbaum encoding for g
may omit either all the binary clauses or the single non-binary clause, depending
on how g occurs in the formula. (If g occurs both positively and negatively, then
no clauses can be omitted.)

Conventions: A double negation of a variable is considered equivalent to the
variable itself. The order of literals in a clause is immaterial; the clause (z V y)
is considered equivalent to (y V z). Given a variable v, var(—v) = v = var(v).

Consider a QBF formula @ of the form P.¢ where P is the quantifier prefix and ¢
is a conjunction of clauses and equivalences'. Consider a literal g, where var(g) is
existentially quantified in the innermost quantification block. We define binary
half-def and non-binary half-def as follows:

e If (1) g does not occur (as a disjunct?) in any non-binary clause and (2) the
set of clauses in which g occurs (as a disjunct) is {(g V —z1), ..., (g V —zp)},
then (g V1 V...V x,) is a binary half-def of g in P.

e If =g occurs (as a disjunct) in exactly one clause, and that clause is a non-
binary clause (-g V 1 V ... V xy,), then g A (z1 V ... V) is a non-binary
half-def of g in &.

! Motivation: We start with a formula in CNF. When we discover clauses that con-
stitute a gate definition, we delete the clauses and insert an equivalence for the gate
definition. E.g., (xVy)A(—zV-y)AC3A...ACy might become (z < —y)AC3A...ACh.

2 E.g., « doesn’t occur as a disjunct in the clause (—z V y), but -~z does.

2 William Klieber

Notation: Given two formulas ¢ and f and a variable v, let “¢[v— f]” denote
the result of taking ¢ and substituting all occurrences of v with f. Given a
negative literal £ = —w, let “p[{— f]” denote ¢p[v——f].

Notation: Given a formula ¢ and an assignment ©m = {zy:cy, ..., Tpic, }, let
“¢|x” denote the substitution of 7 in ¢, i.e., d|x = d[r1 —c1][ra = o] - - - [0 —cn).

Lemma 1. If a formula f of the form (g V x1 V ... V &,) is a binary half-def of
a literal g in P. ¢, then P. ¢[g— f] has the same truth value as P. ¢.

Proof. Let us write “Jg” as an abbreviation of “Jvar(g)”. Since var(g) is
quantifed innermost and existentially, it suffices to prove the following: For every
assignment 7 to all variables in ¢ except g, 3g. ¢[g— f]|x = Jg. #|x. Consider

such an assignment 7. There are two cases:

1. If (x1 V...V 2p,)|x = false, then f|r = g|r, and thus ¢[g— fl|r = é|x.
2. If (x1 V...V xp)|r = true, then:
(a) 3g.¢|x =dlru {g:false} V olru {g: true} (by def of “37)
(b) ¢lruU{g:false} = false because at least one of the binary clauses
with g is false under 7 U {g : false}.
(¢) 3g.9|x = ¢lg—true]|r (follows from the above two steps)
(d) 3g.0lg— fllx = ¢[g— truel]|r, because f|r = true

Lemma 2. If f is a non-binary half-def of a literal g in P. ¢, then P.¢[g— f]
has the same truth value as P. ¢. Proof. Similar to proof of Lemma 1 above.

Internally, the GhostQ preprocessor maintains a list of clauses C' and a hashtable
GateDef that maps gate variables to their definitions.

Definition. A half-def f of g is a definite half-def iff g is not already defined in
GateDef and either (1) f is the only half-def of g and there are no half-defs of
=g or (2) the only innermost-quantified variable in f without a gate def is g.

The GhostQ preprocessor handles Plaisted-Greenbaum roughly as follows:

e Repeat until fixed point:
e For each literal g that has a definite half-def f:
e If the below actions won'’t cause a cycle in the gate defs, then:

e Delete the binary clauses or single non-binary clause associated
with the half-def.

e Let h be a fresh variable. Replace all occurrences of g with h in
both the clauses C' and the gate definitions.

e Add a gate definition: GateDef [h] = f

References

1. A. Goultiaeva and F. Bacchus. Recovering and utilizing partial duality in QBF. In
SAT 20183.

2. M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke. Solving QBF with Coun-
terexample Guided Refinement. In SAT 2012.

3. W. Klieber, S. Sapra, S. Gao, and E. M. Clarke. A Non-prenex, Non-clausal QBF
Solver with Game-State Learning. In SAT 2010.

