
GhostQ-PG QBF Solver Description (2017)

William Klieber

Carnegie Mellon University

1 Overview

GhostQ [3] has not changed much since 2012, when CEGAR learning [2] was
added. A new feature for 2017 is an enhancement to the preprocessor to have
some support for the Plaisted-Greenbaum encoding. Three configurations of
GhostQ have been submitted to QBFEVAL’17:

1. ghostq-pg-cegar: Plaisted-Greenbaum and CEGAR learning.
2. ghostq-pg-plain: Plaisted-Greenbaum, but without CEGAR learning.
3. ghostq-cegar: Unchanged from the 2016 version (no Plaisted-Greenbaum).

2 Reverse Engineering for Plaisted-Greenbaum (cf. [1])

In the Tseitin encoding, the gate definition g = x1 ∨ ... ∨ xn is encoded by the
following clauses: (¬g ∨ x1 ∨ ... ∨ xn), (g ∨ ¬x1), . . . , (g ∨ ¬xn). During
unit propagation, the binary clauses (i.e., clauses with exactly two literals) will
force g = true if any xi becomes true. The single non-binary clause will force
g = false if all the xi become false. The Plaisted-Greenbaum encoding for g
may omit either all the binary clauses or the single non-binary clause, depending
on how g occurs in the formula. (If g occurs both positively and negatively, then
no clauses can be omitted.)

Conventions: A double negation of a variable is considered equivalent to the
variable itself. The order of literals in a clause is immaterial; the clause (x ∨ y)
is considered equivalent to (y ∨ x). Given a variable v, var(¬v) = v = var(v).

Consider a QBF formula Φ of the form P.φ where P is the quantifier prefix and φ
is a conjunction of clauses and equivalences1. Consider a literal g, where var(g) is
existentially quantified in the innermost quantification block. We define binary
half-def and non-binary half-def as follows:

• If (1) g does not occur (as a disjunct2) in any non-binary clause and (2) the
set of clauses in which g occurs (as a disjunct) is {(g ∨ ¬x1), ..., (g ∨ ¬xn)},
then (g ∨ x1 ∨ ... ∨ xn) is a binary half-def of g in Φ.

• If ¬g occurs (as a disjunct) in exactly one clause, and that clause is a non-
binary clause (¬g ∨ x1 ∨ ... ∨ xn), then g ∧ (x1 ∨ ... ∨ xn) is a non-binary
half-def of g in Φ.

1 Motivation: We start with a formula in CNF. When we discover clauses that con-
stitute a gate definition, we delete the clauses and insert an equivalence for the gate
definition. E.g., (x∨y)∧(¬x∨¬y)∧C3∧...∧Cn might become (x ⇔ ¬y)∧C3∧...∧Cn.

2 E.g., x doesn’t occur as a disjunct in the clause (¬x ∨ y), but ¬x does.

2 William Klieber

Notation: Given two formulas φ and f and a variable v, let “φ[v→f]” denote
the result of taking φ and substituting all occurrences of v with f . Given a
negative literal ` = ¬v, let “φ[`→f]” denote φ[v→¬f].

Notation: Given a formula φ and an assignment π = {x1:c1, ..., xn:cn}, let
“φ|π” denote the substitution of π in φ, i.e., φ|π = φ[x1→c1][x2→c2] · · · [xn→cn].

Lemma 1. If a formula f of the form (g ∨ x1 ∨ ... ∨ xn) is a binary half-def of
a literal g in P. φ, then P. φ[g→f] has the same truth value as P. φ.
Proof. Let us write “∃g” as an abbreviation of “∃ var(g)”. Since var(g) is
quantifed innermost and existentially, it suffices to prove the following: For every
assignment π to all variables in φ except g, ∃g. φ[g→f]|π = ∃g. φ|π. Consider
such an assignment π. There are two cases:

1. If (x1 ∨ ... ∨ xn)|π = false, then f |π = g|π, and thus φ[g→f]|π = φ|π.
2. If (x1 ∨ ... ∨ xn)|π = true, then:

(a) ∃g. φ|π = φ|π ∪ {g : false} ∨ φ|π ∪ {g : true} (by def of “∃”)
(b) φ|π ∪ {g :false} = false because at least one of the binary clauses

with g is false under π ∪ {g : false}.
(c) ∃g. φ|π = φ[g→true]|π (follows from the above two steps)
(d) ∃g. φ[g→f]|π = φ[g→true]|π, because f |π = true

Lemma 2. If f is a non-binary half-def of a literal g in P. φ, then P. φ[g→f]
has the same truth value as P. φ. Proof. Similar to proof of Lemma 1 above.

Internally, the GhostQ preprocessor maintains a list of clauses C and a hashtable
GateDef that maps gate variables to their definitions.

Definition. A half-def f of g is a definite half-def iff g is not already defined in
GateDef and either (1) f is the only half-def of g and there are no half-defs of
¬g or (2) the only innermost-quantified variable in f without a gate def is g.

The GhostQ preprocessor handles Plaisted-Greenbaum roughly as follows:

• Repeat until fixed point:
• For each literal g that has a definite half-def f :
• If the below actions won’t cause a cycle in the gate defs, then:
• Delete the binary clauses or single non-binary clause associated

with the half-def.
• Let h be a fresh variable. Replace all occurrences of g with h in

both the clauses C and the gate definitions.
• Add a gate definition: GateDef[h] = f

References

1. A. Goultiaeva and F. Bacchus. Recovering and utilizing partial duality in QBF. In
SAT 2013.

2. M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke. Solving QBF with Coun-
terexample Guided Refinement. In SAT 2012.

3. W. Klieber, S. Sapra, S. Gao, and E. M. Clarke. A Non-prenex, Non-clausal QBF
Solver with Game-State Learning. In SAT 2010.

