GhostQ-PG QBF Solver Description (2017)

William Klieber

Carnegie Mellon University

1 Overview

GhostQ [3] has not changed much since 2012, when CEGAR learning [2] was added. A new feature for 2017 is an enhancement to the preprocessor to have some support for the Plaisted-Greenbaum encoding. Three configurations of GhostQ have been submitted to QBFEVAL'17:

- 1. ghostq-pg-cegar: Plaisted-Greenbaum and CEGAR learning.
- 2. ghostq-pg-plain: Plaisted-Greenbaum, but without CEGAR learning.
- 3. ghostq-cegar: Unchanged from the 2016 version (no Plaisted-Greenbaum).

2 Reverse Engineering for Plaisted-Greenbaum (cf. [1])

In the Tseitin encoding, the gate definition $g = x_1 \vee ... \vee x_n$ is encoded by the following clauses: $(\neg g \vee x_1 \vee ... \vee x_n)$, $(g \vee \neg x_1)$, ..., $(g \vee \neg x_n)$. During unit propagation, the binary clauses (i.e., clauses with exactly two literals) will force g =**true** if any x_i becomes true. The single non-binary clause will force g = **false** if all the x_i become false. The Plaisted-Greenbaum encoding for g may omit either all the binary clauses or the single non-binary clause, depending on how g occurs in the formula. (If g occurs both positively and negatively, then no clauses can be omitted.)

Conventions: A double negation of a variable is considered equivalent to the variable itself. The order of literals in a clause is immaterial; the clause $(x \lor y)$ is considered equivalent to $(y \lor x)$. Given a variable v, $var(\neg v) = v = var(v)$.

Consider a QBF formula Φ of the form $P.\phi$ where P is the quantifier prefix and ϕ is a conjunction of clauses and equivalences¹. Consider a literal g, where var(g) is existentially quantified in the innermost quantification block. We define *binary* half-def and non-binary half-def as follows:

- If (1) g does not occur (as a disjunct²) in any non-binary clause and (2) the set of clauses in which g occurs (as a disjunct) is $\{(g \lor \neg x_1), ..., (g \lor \neg x_n)\}$, then $(g \lor x_1 \lor ... \lor x_n)$ is a *binary half-def* of g in Φ .
- If $\neg g$ occurs (as a disjunct) in exactly one clause, and that clause is a nonbinary clause ($\neg g \lor x_1 \lor \ldots \lor x_n$), then $g \land (x_1 \lor \ldots \lor x_n)$ is a non-binary half-def of g in Φ .

¹ Motivation: We start with a formula in CNF. When we discover clauses that constitute a gate definition, we delete the clauses and insert an equivalence for the gate definition. E.g., $(x \lor y) \land (\neg x \lor \neg y) \land C_3 \land \ldots \land C_n$ might become $(x \Leftrightarrow \neg y) \land C_3 \land \ldots \land C_n$.

² E.g., x doesn't occur as a disjunct in the clause $(\neg x \lor y)$, but $\neg x$ does.

Notation: Given two formulas ϕ and f and a variable v, let " $\phi[v \rightarrow f]$ " denote the result of taking ϕ and substituting all occurrences of v with f. Given a negative literal $\ell = \neg v$, let " $\phi[\ell \rightarrow f]$ " denote $\phi[v \rightarrow \neg f]$.

Notation: Given a formula ϕ and an assignment $\pi = \{x_1:c_1, ..., x_n:c_n\}$, let " $\phi|_{\pi}$ " denote the substitution of π in ϕ , i.e., $\phi|_{\pi} = \phi[x_1 \rightarrow c_1][x_2 \rightarrow c_2] \cdots [x_n \rightarrow c_n]$.

Lemma 1. If a formula f of the form $(g \lor x_1 \lor ... \lor x_n)$ is a binary half-def of a literal g in $P. \phi$, then $P. \phi[g \to f]$ has the same truth value as $P. \phi$.

Proof. Let us write " $\exists g$ " as an abbreviation of " $\exists \operatorname{var}(g)$ ". Since $\operatorname{var}(g)$ is quantifed innermost and existentially, it suffices to prove the following: For every assignment π to all variables in ϕ except g, $\exists g. \phi[g \to f]|_{\pi} = \exists g. \phi|_{\pi}$. Consider such an assignment π . There are two cases:

1. If $(x_1 \lor ... \lor x_n)|_{\pi} = \texttt{false}$, then $f|_{\pi} = g|_{\pi}$, and thus $\phi[g \rightarrow f]|_{\pi} = \phi|_{\pi}$. 2. If $(x_1 \lor ... \lor x_n)|_{\pi} = \texttt{true}$, then: (a) $\exists g. \phi|_{\pi} = \phi|_{\pi} \cup \{g:\texttt{false}\} \lor \phi|_{\pi} \cup \{g:\texttt{true}\}$ (by def of " \exists ") (b) $\phi|_{\pi} \cup \{g:\texttt{false}\} = \texttt{false}$ because at least one of the binary clauses with g is false under $\pi \cup \{g:\texttt{false}\}$. (c) $\exists g. \phi|_{\pi} = \phi[g \rightarrow \texttt{true}]|_{\pi}$ (follows from the above two steps) (d) $\exists g. \phi[g \rightarrow f]|_{\pi} = \phi[g \rightarrow \texttt{true}]|_{\pi}$, because $f|_{\pi} = \texttt{true}$

Lemma 2. If f is a non-binary half-def of a literal g in $P. \phi$, then $P. \phi[g \rightarrow f]$ has the same truth value as $P. \phi$. **Proof.** Similar to proof of Lemma 1 above.

Internally, the GhostQ preprocessor maintains a list of clauses C and a hashtable **GateDef** that maps gate variables to their definitions.

Definition. A half-def f of g is a *definite* half-def iff g is not already defined in **GateDef** and either (1) f is the only half-def of g and there are no half-defs of $\neg g$ or (2) the only innermost-quantified variable in f without a gate def is g.

The GhostQ preprocessor handles Plaisted-Greenbaum roughly as follows:

- Repeat until fixed point:
 - For each literal g that has a definite half-def f:
 - If the below actions won't cause a cycle in the gate defs, then:
 - Delete the binary clauses or single non-binary clause associated with the half-def.
 - Let h be a fresh variable. Replace all occurrences of g with h in both the clauses C and the gate definitions.
 - Add a gate definition: GateDef[h] = f

References

- 1. A. Goultiaeva and F. Bacchus. Recovering and utilizing partial duality in QBF. In *SAT 2013.*
- 2. M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke. Solving QBF with Counterexample Guided Refinement. In *SAT 2012.*
- 3. W. Klieber, S. Sapra, S. Gao, and E. M. Clarke. A Non-prenex, Non-clausal QBF Solver with Game-State Learning. In *SAT 2010*.