
GhostQ QBF Solver System Description

William Klieber

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

April 25, 2012

1 Overview

GhostQ is a DPLL-based solver that uses ghost variables to achieve symmetry in
handling of universal and existential variables. The original version of GhostQ
[4] has support for non-prenex instances, but the version described here drops
support for non-prenex instances and instead optimizes for prenex instances.

The present version of GhostQ has three modes of operation. In the first
mode, GhostQ behaves largely as described in our original paper [4], but with
several additional low-level optimizations. In the second mode, CEGAR learning
is enabled, as described in [3]. The third mode is like the second mode, except
that we first run bloqqer [1] on the input file.1

2 Ghost Literals

Goultiaeva et al. [2] introduce a powerful propagation technique for QBF that
significantly improves on existing QBF solvers on a variety of benchmarks. With
their technique, if the solver notices that a gate literal g must be true in order
for the existential player to win, then g becomes forced. However, this technique
is asymmetric between the existential and universal players. A gate literal g is
forced if it is needed for the existential player to win, but not if it is needed for the
universal player to win. We adapt this technique so that the universal variables
benefit from the same propagation technique as do the existential variables and
so that the learning procedure for satisfying assignments is just as powerful as
for falsifying assignments.

In our prenex solver, for each gate variable g, we introduce two ghost vari-
ables, g〈U〉 for Player U and g〈E〉 for Player E. A ghost literal g〈P 〉 is be forced
whenever we detect that Player P cannot win unless g is made true.

3 CEGAR Learning

We modify GhostQ by inserting a call to a CEGAR-learning procedure after
performing standard DPLL learning. We write “Φin” to denote the current
1 If bloqqer sufficiently simplifies the problem, we use the output of bloqqer. Otherwise

we discard it and proceed with the original input file, since the reverse engineering
code employed by GhostQ currently cannot handle the output of bloqqer.



2 William Klieber

1. Let Xc be the quantifier block of the last decision literal.
Let Qc and Φc be such that (QcXc.Φc) is a subformula of Φin.

2. Let πc be a complete assignment for Xc created by extending the solver’s cur-
rent assignment with arbitrary values for the unassigned variables in Xc and
removing variables in blocks other than Xc. This assignment πc corresponds
to the counterexample in the recursive CEGAR approach.

3. We modify Φin by:
• substituting (∃Xc.Φc) with (∃Xc.Φc) ∨ Φc[πc], if Qc = “∃”, or
• substituting (∀Xc.Φc) with (∀Xc.Φc) ∧ Φc[πc], if Qc = “∀”.

4. All variables that are bound by a quantifier inside Φc[πc] are renamed to
preserve uniqueness of variable names.

Fig. 1. CEGAR Learning in DPLL

input formula, i.e., the input formula enhanced with what the solver has learned
up to now. Both standard DPLL learning and CEGAR learning are performed
by modifying Φin. CEGAR learning is performed only if the last decision literal
is owned by the winner. (The case where the last decision literal is owned by the
losing player corresponds to the conflicts that take place within the underlying
SAT solver in RAReQS.) The CEGAR-learning procedure is shown in Figure 1.

3.1 CEGAR Implementation Details

We have implemented a limited version of CEGAR learning in the solver GhostQ.
Our implementation uses a modified version of step 3 of Figure 1. We substitute
πc into the original version of the input formula Φin, not the current version
of Φin. Although substituting into the original formula instead of the current
formula potentially reduces the effectiveness of CEGAR learning (since we can’t
learn a refinement of a refinement), it reduces the memory consumed per refine-
ment. Unit propagation and the Pure Literal Rule are applied to simplify the
result of the substitution, among other optimizations.

References

1. A. Biere, F. Lonsing, and M. Seidl. Blocked Clause Elimination for QBF. In CADE,
2011.

2. A. Goultiaeva, V. Iverson, and F. Bacchus. Beyond CNF: A Circuit-Based QBF
Solver. In SAT 2009.

3. M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke. Solving QBF with Coun-
terexample Guided Refinement. In SAT 2012, to appear.

4. W. Klieber, S. Sapra, S. Gao, and E. M. Clarke. A Non-prenex, Non-clausal QBF
Solver with Game-State Learning. In SAT 2010.


