
Crafted Combinational Equivalence Instances
William Klieber

Carnegie Mellon University
Pittsburgh, PA, USA
{wklieber}@cmu.edu

I. BACKGROUND

In formal verification, one often wants to check whether
two propositional formulas or combinational logic circuits are
equivalent. Given two propositional formulas φ1 and φ2, we
can check equivalence by taking the exclusive-or (XOR) of
these formulas, denoted “φ1⊕φ2”, and querying whether this
formula is satisfiable. We present a generator for creating
problems of this nature, available at:
https://www.cs.cmu.edu/%7Ewklieber/bench-sat2017/benchgen.py

II. OVERVIEW

This benchmark suite contains two classes of benchmarks:
satisfiable and unsatisfiable. The unsatisfiable formulas are
created as follows. First, a propositional formula φ is ran-
domly created, as detailed in section III. This formula is then
refactored, as detailed in section IV, to produce a logically
equivalent but syntactically very different formula φ′. Finally,
we take the XOR of φ and φ′ and encode it in DIMACS.

For the satisfiable instances, we proceed as follows. We
first generate a formula φ, mostly in the same way as for an
unsatisfiable instance, but with a slight complication explained
in section V. Then, before refactoring it, we first slightly
modify (“tickle”) it to produce a formula that is guaranteed
to not be logically equivalent, as described in section VI. Let
φ′ be the refactored tickled formula. So, φ⊕ φ′ is satisfiable.
However, it turns out that modern SAT solvers can easily solve
even large instances of this form. So, to make things more
challenging, we instead create k formulas (φ1, . . . , φk) for
some small k. (In particular, we use k = 12.) We randomly
generate a single assignment A and then tickle and refactor the
original formulas to produce modified formulas (φ′1, . . . , φ

′
k)

in such a way that φi|A 6= φ′i|A for i ∈ {1, ..., k}, where
“ψ|A” denotes the truth value that ψ evaluates to under A.
The final formula is the conjunction:

(φ1 ⊕ φ′1) ∧ · · · ∧ (φk ⊕ φ′k)

III. GENERATION OF RANDOM FORMULAS

We generate formulas with the following BNF grammar:

AndFmla ::= AND(XorFmla,XorFmla) | Lit
OrFmla ::= OR(XorFmla,XorFmla) | Lit
XorFmla ::= XOR(AndFmla,OrFmla)

| XOR(OrFmla,AndFmla) | Lit
Lit ::= Var | ¬Var

In other words: Each gate has two children. Each child of an
AND or OR gate is either an XOR gate or a literal. Each XOR

gate has one AND child and one OR child, unless one or both
of these children are literals instead.

The formula, viewed as tree, is a balanced tree. In a subtree
with 8 or fewer leafs, each leaf has a distinct variable. This
avoids degenerate cases such as AND(x,¬x) and helps avoid
producing such subformulas during refactoring (section IV).

IV. REFACTORING OF FORMULAS

First all the gates of the formula are converted to if-then-else
(ITE) gates, as follows:

AND(x, y) = ITE(x, y, false)

OR(x, y) = ITE(x, true, y)

XOR(x, y) = ITE(x,¬y, y)

Negations are pushed inwards so that they occur only directly
in front of variables. Then, some subformulas of the form

ITE(ITE(sel , tin , fin), tout , fout)

are refactored to the following logically equivalent form:

ITE(sel , ITE(tin , tout , fout), ITE(fin , tout , fout))

Specifically, we define a recursive procedure Refactor as
follows:

Refactor
(
ITE(ITE(sel , tin , fin), tout , fout)

)
returns either

Refactor
(
ITE(sel ,Refactor(ITE(tin , tout , fout)),

Refactor(ITE(fin , tout , fout)))
)

or

ITE
(
Refactor(ITE(sel , true, false)),

Refactor(ITE(tin , tout , fout)),

Refactor(ITE(fin , tout , fout))
)

with the choice of these two options determined partially at
random. As the base case, Refactor

(
ITE(lit , tout , fout)

)
=

ITE(lit , tout , fout), where lit is a literal.

V. PRETICKLING OF FORMULAS

When creating satisfiable instances, there is an additional
step in randomly generating a formula. After the steps in
section III are completed, the formula is pretickled to produce
a semantically different (i.e., not logically equivalent) formula
that is suitable for input to the Tickle function described

1

https://www.cs.cmu.edu/%7Ewklieber/bench-sat2017/benchgen.py

in section VI. The purpose of this is to ensure that, for a
predetermined randomly generated assignment A, Tickle can
flip the truth value of the formula φ by flipping the polarity
of one of its leafs. Let Lflip be the leaf whose polarity we
will flip. Let P be the path from the root of φ to Lflip . Then,
for each gate G of the form AND(x, y), AND(y, x), OR(y, x),
or OR(x, y), where G and x are on the path P (and therefore
y is not), we must ensure that y does not control the output
of G. If G is an AND gate and y|A = false, then Pretickle
replaces y with its negation. Likewise, if G is an OR gate and
y|A = true, Pretickle replaces y with its negation.

VI. TICKLING OF FORMULAS

Given an assignment A and a formula φ produced by
PretickleA, the TickleA function flips the polarity of a single
leaf node (literal) of φ such that φ|A 6= TickleA(φ)|A. As in
section V, let Lflip be the leaf whose polarity we will flip,
and let P be the path from the root of φ to Lflip . We define
the TickleA function as follows, where op ∈ {AND, OR, XOR}:

TickleA(op(x, y)) =

{
op(TickleA(x), y) if x is on P
op(x,TickleA(y)) if y is on P

TickleA(lit) = ¬lit for a literal lit

2

	Background
	Overview
	Generation Of Random Formulas
	Refactoring Of Formulas
	Pretickling Of Formulas
	Tickling Of Formulas

