
Crafted Combinational Equivalence QBF Instances
William Klieber

Carnegie Mellon University
Pittsburgh, PA, USA
{wklieber}@cmu.edu

I. INTRODUCTION

In formal verification, one often wants to check whether
two propositional formulas or combinational logic circuits are
equivalent. The QBFs in this benchmark suite address a related
type of problem: “Does there exist an assignment to a set
of variables VE under which one propositional formula φ1
becomes logically equivalent to another propositional formula
φ2?”. Accordingly, the QBFs of this benchmark suite have
the form:

∃VE .∀VA. φ1 ⇔ φ2

where VA and VE are two disjoint sets of boolean variables,
and φ1 and φ2 are propositional formulas, and the set of
variables in φ1 is VA ∪ VE , and the set of variables in φ2
is VA. We present a generator for creating such problems:
https://www.cs.cmu.edu/%7Ewklieber/bench-sat2017/benchgen.py

II. OVERVIEW

This benchmark suite contains two classes of benchmarks:
equivalent (for which the QBF evaluates to true) and
inequivalent (for which the QBF evaluates to false). The
equivalent QBFs are created as follows. First, a propositional
formula φ0 is randomly created, as detailed in section III.
Formula φ1 is then produced from φ0 as detailed in section IV,
so that there is at least one assignment to VE under which φ1
becomes equivalent to φ0, and ideally many assignments under
which it does not. Formula φ2 is produced by refactoring
φ0, as detailed in section V, to produce a formula logically
equivalent to φ0 but syntactically very different. The final
QBF is ∃VE .∀VA. φ1 ⇔ φ2.

For the inequivalent instances, we proceed as follows. We
first generate a formula φ0, mostly in the same way as for
an equivalent instance, but with a complication explained in
section VI. Formula φ1 is then created from φ0 exactly as
described above for equivalent instances. To generate φ2 from
φ0, we first slightly modify (“tickle”) φ0 to produce a formula
that is guaranteed to not be logically equivalent to φ0, as
described in section VII, and then refactor it as described in
section V. Note that it is not guaranteed that φ1 is inequivalent
to φ2 under every assignment to VE . Depending on which
variables from VA were randomly selected when creating φ1
from φ0 in section IV, there might actually exist an assignment
to VE that makes φ1 equivalent to φ2. However, experimental
evidence indicates that this is unlikely.

III. GENERATION OF RANDOM FORMULAS

We generate formulas with the following BNF grammar:

AndFmla ::= AND(XorFmla,XorFmla) | Lit

OrFmla ::= OR(XorFmla,XorFmla) | Lit

XorFmla ::= XOR(AndFmla,OrFmla)

| XOR(OrFmla,AndFmla) | Lit

Lit ::= Var | ¬Var

In other words: Each gate has two children. Each child of an
AND or OR gate is either an XOR gate or a literal. Each XOR

gate has one AND child and one OR child, unless one or both
of these children are literals instead.

The formula, viewed as tree, is a balanced tree. In a subtree
with 8 or fewer leafs, each leaf has a distinct variable. This
avoids degenerate cases such as AND(x,¬x) and helps avoid
producing such subformulas during refactoring (section V).

IV. SPLITTING THE LEAFS

The formula φ0 can be viewed as tree, where each leaf node
is a literal. We create φ1 from φ0 by replacing each leaf node
` with a formula of the form ITE(e, `, u), where e is a variable
from VE and u is a randomly selected literal such that u or
¬u is in VA. “ITE(x, y, z)” denotes an if-then-else gate; it is
logically equivalent to (x∧y)∨(¬x∧z). A different existential
variable is used for each leaf node of φ0.

V. REFACTORING OF FORMULAS

First all the gates of the formula are converted to ITE gates:

AND(x, y) = ITE(x, y, false)

OR(x, y) = ITE(x, true, y)

XOR(x, y) = ITE(x,¬y, y)

Negations are pushed inwards so that they occur only directly
in front of variables. Then, some subformulas of the form

ITE(ITE(sel , tin , fin), tout , fout)

are refactored to the following logically equivalent form:

ITE(sel , ITE(tin , tout , fout), ITE(fin , tout , fout))

Specifically, we define a recursive procedure Refactor as
follows:

1

https://www.cs.cmu.edu/%7Ewklieber/bench-sat2017/benchgen.py

Refactor
(
ITE(ITE(sel , tin , fin), tout , fout)

)
returns either

Refactor
(
ITE(sel ,Refactor(ITE(tin , tout , fout)),

Refactor(ITE(fin , tout , fout)))
)

or

ITE
(
Refactor(ITE(sel , true, false)),

Refactor(ITE(tin , tout , fout)),

Refactor(ITE(fin , tout , fout))
)

with the choice of these two options determined partially at
random. As the base case, Refactor

(
ITE(lit , tout , fout)

)
=

ITE(lit , tout , fout), where lit is a literal.

VI. PRETICKLING OF FORMULAS

When creating inequivalent instances, there is an additional
step in randomly generating a formula. After the steps in
section III are completed, the formula is pretickled to produce
a semantically different (i.e., not logically equivalent) formula
that is suitable for input to the Tickle function described
in section VII. The purpose of this is to ensure that, for a
predetermined randomly generated assignment A, Tickle can
flip the truth value of the formula φ by flipping the polarity
of one of its leafs. Let Lflip be the leaf whose polarity we
will flip. Let P be the path from the root of φ to Lflip . Then,
for each gate G of the form AND(x, y), AND(y, x), OR(y, x),
or OR(x, y), where G and x are on the path P (and therefore
y is not), we must ensure that y does not control the output
of G. If G is an AND gate and y|A = false, then Pretickle
replaces y with its negation. Likewise, if G is an OR gate and
y|A = true, Pretickle replaces y with its negation.

Note: In an earlier version of the benchmark generator,
a different algorithm was used for the Pretickle function. In
particular, the old version of Pretickle examined every gate in
the formula instead of only gates along a path. If both inputs
to an AND gate evaluate to false under A (or both inputs
to an OR gate evaluate to true under A), the old version of
Pretickle would replace one of these inputs with its negation.
The command-line argument “--pretickle-path” controls
which version of Pretickle is used.

VII. TICKLING OF FORMULAS

Given an assignment A and a formula φ produced by
PretickleA, the TickleA function flips the polarity of a single
leaf node (literal) of φ such that φ|A 6= TickleA(φ)|A. As in
section VI, let Lflip be the leaf whose polarity we will flip,
and let P be the path from the root of φ to Lflip . We define
the TickleA function as follows, where op ∈ {AND, OR, XOR}:

TickleA(op(x, y)) =

{
op(TickleA(x), y) if x is on P
op(x,TickleA(y)) if y is on P

TickleA(lit) = ¬lit for a literal lit

VIII. SUMMARY

In summary, we produce a QBF of the form
∃VE .∀VA. φ1 ⇔ φ2 where φ1 and φ2 are produced as
follows:

if (is_equivalent_instance) {

phi_0 := random_fmla();

phi_1 := split(phi_0); /* section IV */

phi_2 := refactor(phi_0);

} else {

A := random_assignment();

phi_0 := pretickle(A, random_fmla());

phi_1 := split(phi_0); /* section IV */

phi_2 := refactor(tickle(A, phi_0));

}

2

	Introduction
	Overview
	Generation Of Random Formulas
	Splitting the Leafs
	Refactoring Of Formulas
	Pretickling Of Formulas
	Tickling Of Formulas
	Summary

